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(Z. Naturforschg. 22 a, 985—997 [1967] ; eingegangen am 3. Mirz 1967)

The Gorkov equations are solved for ideal planar films of superconductors. For the purpose of
comparison, two different formulations of the self-consistency condition are used; the first is
characterised by a cut-off factor in the energy integral, the second by the termination of the
@ summation at the same cut-off value. Certain values of the film thickness (those corresponding
to resonance intervalls in the sense of Taompson and Brarr) are excluded, but they are not decisive
to this treatment. By this means, a fairly accurate check of the error in the approximation is made
possible. This allows a quantitative comparison of the critical temperatures and of the two forms
of the gap function calculated from the two formulations of the basic equations.

At absolute zero, both formulations of the theory become equivalent and lead to essentially
identical relations between the gap function and film thickness. However, the critical temperature
which results from the termination of the w summation is noticeably higher than that calculated

with the help of the energy cut-off.

In dem gleichen MaBe, wie die experimentelle Er-
forschung der Phidnomene der Supraleitung auf im-
mer dinnere Aufdampfschichten ausgedehnt wurde,
stellte sich immer deutlicher die Frage nach den
moglichen quantenmechanischen Auswirkungen die-
ser Anndherung der Schichtdicken an atomare Gro-
Benordnungen.

Als erste haben Brarr und Tuompson!:2 diese
Frage aufgegriffen. Sie beschrieben das Ein-Teilchen-
Verhalten der Elektronen mittels eines unendlich
hohen Kastenpotentials 2, wie es durch das Ergebnis
der vorausgegangenen maschinellen Rechnung!
nahegelegt war. Als Modell fiir die Zwei-Teilchen-
Wechselwirkung diente — in der Ortsdarstellung —
wie bei Gorkov?3 das Kontaktpotential. In der Im-
pulsdarstellung wurden dessen Matrixelemente in
der seit BCS  eingebiirgerten Weise vereinfacht. Un-
ter anderem wurde die vom Kontaktpotential in der
Liicken-Gleichung (Gap-Gleichung) hervorgerufene
Divergenz durch eine energieabhingige Beschrin-
kung® der an der supraleitenden Wechselwirkung
beteiligten Ein-Teilchen-Zustinde vermieden. Dabei
blieb dahingestellt, ob die Benutzung dieser BSC-
reduzierten Form der Wechselwirkung auch unter
den nunmehr betrachteten, vollig andersartigen geo-
metrischen Verhaltnissen ihre Berechtigung behilt.

Als Resultat fanden die Autoren eine resonanz-

* D 7, Gottingen 1966.

1 J. M. Bratr u. C.J. Taomeson, Phys. Rev. Letters 10, 332
[1963].

2 C. J. Tuomeson u. J. M. Brarr, Physics Letters 5, 6 [1963].

3 L. P. Gorkov, J. Exp. Theor. Phys. USSR 34, 735 [1958] ;
engl. Ubers. Soviet Phys.—JETP 7, 505 [1958].

artige Schichtdickenabhéngigkeit des Liicken-Para-
meters beim absoluten Temperaturnullpunkt.

Kurz nach der Arbeit von TrHompson und Brarr
erschien eine Arbeit von FarLk 8, in der dasselbe Pro-
blem u. a. nochmals, nun allerdings mit den analyti-
schen Mitteln der Green-Funktionen formuliert
wurde. Im Rahmen dieser Rechenmethode bot sich
sogleich auch der natiirlichere Weg zur Vermeidung
der durch die Kontakt-Wechselwirkung verursachten
Divergenz an. Er besteht in der Einschrankung der
in diesem Formalimus auftretenden w-Summation?
statt einer Begrenzung des Energie-Intervalls.

Favik 16ste die Gorkov-Gleichungen fiir die GrEEN-
Funktionen des Supraleiters mit zunichst konstant
ausgesetztem Paarpotential 4(z) =4 und gewann
durch Einsetzen des damit erhaltenen F (z,z) in
die Selbstkonsistenzbedingung eine erste, nun echt
r-abhéngige Iteration von 4(z). Diese wurde iiber
eine Mittelungsvorschrift mit der konstanten Aus-
gangsgrofle 4 in Beziehung gesetzt und aus diesem
Zusammenhang die Schichtdickenabhangigkeit des
Liicken-Parameters 4 beim Temperaturnullpunkt
entnommen. Bei geeigneter Wahl eines gewissen
Parameters 4, der u.a. eine Folge der speziellen
Definition der Mittelung ist, 1Bt sich — soweit mit-
geteilt wurde — quantitative Ubereinstimmung mit
dem Resultat von THompson und Bratr erzielen.

4 J. Barpeen, L. N. Coorer u. J. R. Scurierrer, Phys. Rev.
108, 1175 [1957].

Diese Cut-off-Operation nennen wir kurz,, Abschneiden in €',
D. S. Faixk, Phys. Rev. 132, 1576 [1963].

Im folgenden kurz als ,,Abschneiden in w* bezeichnet.
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Die Erweiterung der Giiltigkeit dieses Ergebnisses
auf den ganzen supraleitenden Temperaturbereich
bis hinauf zur Ubergangstemperatur T, wurde von
Faix in einer FuBlnote besprochen, wobei unklar
bleibt, wie weit die dort gemachten Angaben auf
Rechnungen beruhen bzw. eine Vermutung darstel-
len. Danach soll sich die Beriicksichtigung endlicher
Temperaturen lediglich in einem zusitzlichen Faktor
th 3B E unter dem Energieintegral der Liicken-Glei-
chung auswirken, also gerade so, wie es sich schon
bei der Behandlung des translations-invarianten
Supraleiters unter Beschrinkung der Energie-Inte-
gration ergab.

Die Resultate von TaompsoN und Brarr wie auch
von Farx beruhen alle auf gewissen vereinfachenden

H. RAUFUSS

Annahmen; es soll der Zweck dieser Arbeit sein,
einige der Fragen zu beantworten, die mit der Be-
urteilung der Giite dieser Naherungen zusammen-
héangen.

In Abschnitt 1 werden die im weiteren benotigten
Ausgangsgleichungen bereitgestellt. Die Losung der
Gorkov-Gleichungen bei Abschneiden in € ist weit-
gehend néherungsfrei moglich und wird — um als
Anbhalt bei der in Abschnitt 3 dargelegten, nicht ganz
so geschlossen durchfithrbaren Auswertung des mit
Abschneiden in ® formulierten Gleichungssystems
dienen zu kénnen — diesem in Abschnitt2 voran-
gestellt. In Abschnitt4 endlich werden die zuvor ge-
wonnenen Aussagen mit den Ergebnissen der ge-
nannten Autoren verglichen.

1. Bereitstellung der Grundgleichungen

Die Beschreibung des Ein-Teilchen-Verhaltens der Elektronen in einer supraleitenden Schicht der Dicke «
schlieBen wir an die Formulierung von TrompsoN und Brarr an.
Aus der ScHRODINGER-Gleichung mit dem Ein-Teilchen-Potential

V@ =(3 G 2Sousd)s > Swise )
folgen mit k=1 die auf dem Periodizitatsquader (a, L, L) normierten Ein-Teilchen-Wellenfunktionen
Pk (2T) = i*‘/—wsinnzxexpikﬂ' (2)
mit den Impulskomponenten &
b= %, ky=2RE, = 22T gty #0,=1,2,3,....

Im Grenzfall L — ~ besetzen die Ein-Teilchen-Zustande eine Schar zu k,, k, paralleler und in %,-Richtung
dquidistanter Ebenen; wir werden sie kurz k,-Ebenen nennen.
Als Zwei-Teilchen-Bewegungsgleichungen dienen die mit der Kontaktwechselwirkung

v(R—R)= —V,0(R—R),

R=(z, 1) (3)

mit ortsunabhéingigem Kopplungsparameter 7 ;>0 zu gewinnenden Gorxkov-Gleichungen 3

(iwl+ oM

’*]L'*_/'R —V(I) +Iu)cwl(x,x,ar_r’) +A(I) Fi—l(x’x”r_r’) =6(x_x’) 6('._1.’)’ (4)

(i w;— 271]”' AR + V(l’) — M ) F;':,(x, 23’, r=— r,) +A(I) Gw (IL‘, I,, r— r’) =0 (5)
fiir die Greex-Funktionen G,, und FJ,. Die reell wihlbare und gewihlte Liicken-Funktion A () ist durch

die Beziehung

A(z) = Z X Fii(%,2,0) (6)

8 Die den Impulskomponenten k; und % entsprechenden Ener-

gien werden spiéter entweder als & notiert, wenn sie sich auf
den Ursprung des Impulsraumes beziehen, oder als € wenn
sie auf das chemische Potential # reduziert sind. Infolgedes-
sen bestehen mit (M =Elektronmasse)

2
e ("E) , en= R,

“om\a oM Enk=Ent &k

die Beziehungen

Enk=Entep=en+Er=¢cnk—MU.
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definiert. Darin bedeutet wie iiblich (mit kg=1) / die reziproke Temperatur, 7~ 1. Ferner ist
w=2I14+1)aT t1=0,1,2,... (7)

Der Index [ an der Variablen w moge einfacherer Schreibweise halber vorlaufig unterdriickt werden.

Als Folge der Verwendung des Kontaktpotentials (3) divergiert der Ausdruck (6). Es ist u. a. das Ziel
dieser Arbeit, die aus den beiden hauptséchlich benutzten Abschneide-Verfahren folgenden Resultate quan-
titativ zu vergleichen. Die explizite Formulierung erfolgt zweckmifig in (n, k)-Darstellung, zu der man mit-
tels der Fourier-Transformation

1 o . ; . ' m .
G,(z,2,1) = S Yy [d&kG,(n,n, k) sin ﬁ? sin "'Zx expik-r, (8)
< n,n =1
1 s ; . nar ;
Fi(z,2',r) = o > [&KFi(nn k)sin"" “sin """ expik-r (9)
n,n'=1 a a

ibergeht. Fiir die Liicken-Funktion ist die Darstellung

4 = W . naz . N7
A(x) = INF1 n,%_:l A(n,n’) sin n;”sm E%* (10)

moglich, wenn man die Matrix 4 durch

’ 2N+1) 7V
A(”’")=(T;7:§a)ﬂ :

2 [&K F 5 (n,n', k) (11

definiert. Die transformierten Gorkov-Gleichungen nehmen dann die Gestalt

(o) Coln,n, k) + X AQL) X Fi(mn' k) 0miD _5 . (12)

Li=1 m=1 L
((0+ew) FEun' k) + 3 AGD) 3 Gulmn' k) ST <0 (13)

=1 m=1 +1

an. Die Faktoren
a
S(amll)= 8 fdx gin BEE iy BAE o IFE i FEE (14)
a b a a a a

= —00,n+m+i-1 =00, n+m-1+7 — 00, n-ms1+7 + 00, nem-1-7
+60,n-me1-7 +00,n-m-1+7 —O0,n-m-1-v (15)
fassen die Faltungseigenschaften der Produkte A-Fg und 4-G, zusammen. In Gl. (15) ist der Anteil
00, n+m+1+7 ausgelassen, weil alle vier Quantenzahlen = 1 sind, ihre Summe also nicht verschwinden kann.

Das urspriinglich auf BCS zuriickgehende Abschneide-Verfahren (Abschneiden in der Energie €) lafit

sich nun mit der Stufenfunktion

1 fir 220
O(z) = {0 fir 2 <0’ (16)
und der Abkiirzung ©,; =0 (wp—| €. |), worin wp die Desve-Frequenz bedeutet, durch
A (n’ n,) = (2 N+QE’ > /d2k @nk @n'k Fl:(ns n,s k) (11 a)

8ataff =
ausdriicken.

Das in gewissem Sinne natiirlichere ,,Abschneiden in w“, das aus der Vorstellung einer durch retardier-
ten Phononaustausch vermittelten Elektron-Elektron-Wechselwirkung entwickelt wurde, liefert andererseits
die Form
eN+D ¥, @

<

Aln,n) = 5 25 [k F 5(n,n, k). (11b)

W="wp
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2. Losung der Gorkov-Gleichungen
bei Abschneiden in €

Bei Zugrundelegung der Gl. (11 a) tragen wegen
der O-Faktoren unter dem Integral nur jene Ein-
Teilchen-Zustinde zur Wechselwirkung bei, die in-
nerhalb der zum Ursprung des Impulsraumes kon-
zentrischen Kugelschale mit den durch die Energien
u+owp und u—wp bestimmten Radien liegen. Auf
den k,-Ebenen mit €, < — wp sind dies Kreisring-
bereiche mit jeweils gleichem Flacheninhalt 27 oy,
bzw. Kreisscheiben, sofern |€,| < wp. Rechneri-
scher Einfachheit halber werden wir alle jene
Schichtdickenintervalle (Resonanz-Intervalle im Sinne
von TrompsoN und Brarr) von der Betrachtung aus-
schlielen, fiir die die letzte Ungleichung gilt.

Die durch ey<wp<€y,; definierte, von der
Schichtdicke a abhingige Quantenzahl N nennt die
Zahl der insgesamt an der Wechselwirkung beteilig-
ten k,-Niveaus und damit gleichzeitig den Rang der
Liicken-Matrix 4.

Eine weitere rechnerische Vereinfachung erreichen
wir durch die Forderung

M_U)D+£ngllt+o)D_81l+1, néN_l, (17)

die besagt, daf} samtliche oben genannten Kreisringe

paarweise Uberlappungsfrei beziiglich ihrer k,, k.-
Erstreckung sind. Dadurch gilt in Gl. (11 a)

H. RAUFUSS

also strenge Diagonalitit der Liicken-Matrix 4. Die
Bedingung (17) 1aBt sich mit der fiir diese Zwecke
geniigend genauen Beziehung

2 N2
T (19)
umformen zu
u -~
NSVzwD(2n+1). (20)

Soll die Liicken-Matrix in allen Indizes diagonal
sein, ist n=1 zu setzen, so daf} folgt

N< 1/ 3%
S swp-
Bei Verwendung der schon von Trompson und Bratr

benutzten Werte

1=~3+10°K und wp~102°K

(21

(22)

bedingt die Forderung (17) die Beschrankung auf
den Bereich

N <20 bzw. a STOA. (23)

Da aber das Resonanz-Verhalten der interessieren-
den Groflen nach den Ergebnissen der genannten
Autoren oberhalb dieses Schichtdickenbereichs schon
weitgehend abgeklungen ist, bedeutet der Ausschluf}
groflerer Schichtdicken keinen Verzicht auf wesent-

O, 0,1 = 01 O (18)  liches Detail.
Mit Gl. (18) entsteht nun aus Gl. (11 a)
An, ) =A(n) by, = G070 X &K O F G (n,m, ) 8y, (24)
womit sich die Gorkov-Gleichungen zu
. . & & o )y Samll)
(L w "enk) Gw (n, n, k) + Z, A (l) Z Fw (my n, k) ’”’2’1’\/‘_[_'17” =0pn,n (25)
=1 m=1
N o0
Gotew) Fimn k) + 3 AQ) 3 Go(m,n’,k) 5%?;% -0 (26)
=1 m=1
vereinfachen. Mit der Abkiirzung
0 s = . Omn
GCo(n,n', k) =G>, (nk) 6, n= e 27)

fiir die Greex-Funktion des normalleitenden Systems gewinnen wir durch Elimination von G, (n,n’, k) die

Gleichung

N
= ’ _ o0 0/ 7 y
F& (n,n',B) =G4 (nk) GO’ R) X AWM 7)Y

o0

6Lk X AW AT) S
Li'=1

m,m’=1

S(nn'll

Co(m k) Fi (m',n', Tg) >

nm L) S(mm’ l'rl')
(2N+1)2 :

(28)
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Durch Iteration und Einsetzen in Gl. (24) erhalten wir schlieBlich

AN+ V, 2 N -
A(n) = (8”2a),80w:ﬁmfd2k9"klcg(nk”2{,;1A(l) 72,(,'1!\/'!-_’_1)_
N
= L2 AW A AW 3 G R 6 SR

v Tr=1

D) N+1)3

mm

Sam’ V) S(m' m" U')S(m” nl” 1) £. .. } (29)

Diese storungstheoretische Entwicklung ist nunmehr wie iiblich mittels Teilsummation iiber wenige Term-

typen auszuwerten.

Zuerst fithren wir den Ansatz

A(l)y =4-O(N -1)

(30)

ein, dessen niherungsweise Berechtigung sich am Ergebnis erweisen wird. Damit lautet der (27 +1)-te

Term in der Klammer von Gl. (29)

(—1)r A2 N i

@N+LBH S =1 ... m o2y} =1

S(n m' l; l/) 'S(m’, mu l// l//) .

Betrachten wir nun den Anteil dieses Ausdrucks, der
durch Beschriinkung aller Indizes m auf die Werte
1 bis N entsteht, dann konnen wir — da auch der
Index n < N ist — von der Beziehung

Y samiy

S 2N+1 (32)

_6n,m7 n’mgN

Gebrauch machen. Damit gewinnen wir fiir besagte
Anteile sofort die einfache Form

) A2v+1
(=1 ey

so daB der Ausdruck (29) nach Summation der geo-
metrischen Reihe aller Terme (33) als

4
wrrEn TR }
(34)

(33)

2N+1) V s
Ay = CYTe T fak 0,

geschrieben werden kann. Hierin ist E,; = €j; + @2,
und R, bedeutet die Gesamtheit aller jener Terme,
in denen mindestens eine m-Summation von N +1
bis o lauft.

Die Summation der obigen wie auch der in R,
noch auftretenden geometrischen Reihen unterliegt
formal der Konvergenzbedingung 4%2<w? < w?
+ €xx, also wegen Gl (7): A(T) <aT. Jedoch be-
rithrt diese nicht die Allgemeingiiltigkeit der bei der
Summation erhaltenen Funktionen. Diese Behaup-
tung 1aft sich durch Einsetzen von 4(n) sowie der
auf ganz entsprechendem Wege zu findenden Greex-

G%o(nk) GS(m k) -

G (m®) k) GO(n k)

ce ' S(m@) @D &)y SN, (31)

Funktionen FJ (n,n’,k) und G,(n,n’,k) in die
Gorxkov-Gleichungen verifizieren.

Der Reihenrest R, wird im Anhang 1 ausgewertet.
Dabei zeigt sich, dal er nur noch Beitrige enthilt,
die von zweiter und hoherer Ordnung in dem Ent-
wicklungsparameter a=4/u~1073 klein sind gegen
den in Gl. (3) bereits abgespaltenen Hauptterm. Die
Abschitzung allein der Anteile der Ordnung o2
liefert
10 N u? 4

(1) T
| R% (21\’+l)2 0*+Eq

“a? (35)

2
ENy 2,k

und mit den speziellen Werten von Gl. (22)

|R(1)1<4‘ _Ai, a2,

2+E2 (36)

Nach Einfithrung von Zahlenfaktoren f, gemal

0L fu<l, n<N (37)

kann die Abschitzung (36) formal als Gleichung ge-
schrieben werden, womit dann Gl. (34) die Form

2N+ ¥,
4 = “garag

S @k, 2

w=—00

2+E2 {1 +4f, a'} (38)
annimmt. Die scheinbare n-Abhingigkeit des a-un-
abhiingigen Hauptterms beseitigen wir durch Uber-
gang zu der Integrationsvariablen €,;, so da} die
n, k-Indizierung auler an dem Faktor f, unterblei-



990
ben kann:
2N+1) V,
4(n) = " 8a%af
wp
= A .,
sz_m de " m{l+4fa® . (39)
0

Dies 1aB3t sich schlieBlich noch umschreiben zu
‘ Am)—4
| A

L <4an=1,2,....,N, (40)

woraus wir — bis auf Abweichungen der Grofen-
ordnung 1076 — unmittelbar die Rechtfertigung fiir
den Ansatz (30) entnehmen.

Im weiteren wollen wir die zu o proportionale
Korrektur in Anbetracht ihrer Geringfiigigkeit auler
acht lassen. Dann gewinnen wir durch Einsetzen der
Beziehung

1 2 1
g WPE= 5 2 Ginnierie

w=—00

(41)

in Gl. (38) als implizite Bestimmung fiir den Liik-
ken-Parameter A(T, a, N) die Gleichung

@p

CLES A f e

4dma
0

th 3 fye2+ 42
T

Leicht ist nun der Grenzfall 4— 0 zu behandeln,
durch den bei einem Ubergang zweiter Art die Uber-
gangstemperatur T, definiert ist. Aus Gl. (29) folgt,
daB in diesem Falle alle Glieder hoherer Ordnung
in 4 gegeniiber dem linearen Term verschwinden.
Das bedeutet die sogar exakte Giiltigkeit von Gl. (42)

mit 4=0. Die Bestimmungsgleichung fiir T, lautet
deshalb

(43)

wp
1o CNED VM o bipe
dma €
0
Unter der Bedingung T, < T = wp kann in prak-
tisch ausreichender Naherung

ro=fac WAL (22 T0)
0

7z Te

Iny=C=0,57721... (44)

gesetzt werden, womit sich die Moglichkeit der ex-
pliziten Darstellung

47a

2y . ...
Te(a,N) = ~_~Tp-exp ( (2N+1)MV.,) (45)

H. RAUFUSS

der kritischen Temperatur T, als Funktion der
Schichtdicke bietet. Die Funktion T, weist keine ex-
plizite Abhingigkeit vom chemischen Potential u
auf. Dieses geht aber implizit und durchaus entschei-
dend iiber die Definition

—pleN)|Swop  (46)

| a2 N?
len|= 2Ma

der Resonanz-Intervalle in den Verlauf von T, ein,
der in Abb. 1 iiber der Schichtdicke aufgetragen ist.
Aus der a-Abhingigkeit des chemischen Potentials —
wie sie von THompsoN und Brarr wie auch von Fark

N2 3 4 5 6 7 8 9

oL~

5 0 15 20 25 300l

Abb. 1. T (untere) und T'¢ (obere Kurvenstiicke) als Funktio-

nen der Schichtdicke a gemafl Gl. (45) bzw. Gl. (77). Die ge-

strichelten Verbindungsstiicke der T¢-Kurvendste sind will-

kiirlich, aber in hier ausreichender Naherung als gerade an-

genommen. Parameter: Tp=100 °K, T, =Ubergangstem-
peratur des unendlichen Supraleiters=3,75 °K.

bestimmt wurde — folgt u.a. die besonders bei
kleinsten Schichtdicken merkliche Nicht-Aquidistanz
der Resonanzstellen.

Aus den Gln. (10), (24) und (30) ergibt sich
schlielich die im Grenzfall 7' =T exakte, aber auch
fir T <T, bis auf Korrekturen der Ordnung o? giil-
tige Ortsdarstellung der Liicken-Funktion

4 N nnzx
R S, S . Sl
A(x)~2N+ln=£lsm .

(47)

Die vereinfachende Wirkung der Bedingung (17)
bestand in der Ausschaltung der AuBerdiagonal-
elemente der Liicken-Matrix. Zusammen mit der Be-
dingung |€, | < wp lieferte das die véllige Entartung
der Liicken-Matrix und daher unmittelbar auch die
Eindeutigkeit der Losung (43), (47).

Bei Verzicht auf die Bedingung (17) lautet die
linearisierte Liicken-Matrix-Gleichung allgemeiner

@N+1) MV,

Amm) = g ) (18)
¥ » S ll) ,
.UZ;IA(I,I) “oNg1l * n =1,2,...,N,
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worin 7.(n,n’) die zur Temperatur 7. genommene
Matrix

Ok Ok

i fd2k’('"

0= —i 0+ Enk) ({ 0 +Enk)
(49)
bedeutet. Man erkennt durch Einsetzen, daf3 die Gl.
(43) auch diese allgemeinere Liicken-Gleichung 16st.
Die Eindeutigkeit dieser Losung ist aber nun ohne
Diskussion der vollstindigen Determinanten-Bedin-
gung des Systems (48) nicht mehr feststellbar.

Zum SchluB dieses Abschnitts sei noch der Grenz-
fall T=0 betrachtet. Die th-Funktion in Gl. (42)
wird in diesem Fall gleich eins, so da8 der Liicken-
Parameter nach Integration in der Form

’ 1
t(n,n’) = 2aMB

wD

A= ama 0
T eNFY MY,
oder — solange 4, hinreichend klein gegeniiber
2 wp bleibt — genahert als
dma
A0z2wpexp(—— —(—2N+1) MVO ) (51)

dargestellt werden kann. Zusammen mit Gl. (45)
ergibt sich hieraus die Beziehung

Ay(a) =~ —’;—fA T.(a)=~1,76T.(a). (52)

3. Losung der Gorkov-Gleichungen
bei Abschneiden in

Im vorigen Abschnitt bewirkte die Beschrankung
auf hinreichend diinne Schichten zusammen mit dem
Ausschlu8 der Resonanz-Intervalle die strenge Gleich-
heit der Diagnalelemente der Matrix (49) sowie das

2N+1) 7V
Am = Sy

W= "wp

r

=

——
@N+1)3

in der sie nun auch véllig analog Gl. (29) behandelt
werden kann. Insbesondere bleibt die Abschitzung
(36) formal giiltig, womit die Giiltigkeit der Be-
ziehung

@N+DV, B o 1
sataf 2, V* orEn

w=—wp

-

(58)

+wp N
2 fd?klcz(nk)v{l;zt(l)

S(n ml ll ll) S(m/ m’/ ll/ l/l)s(mll n ll’l llll) i ..
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Verschwinden aller ihrer Auflerdiagonalelemente.
Die damit erzielte Reduktion des Gleichungssystems
fir die Elemente der Liicken-Matrix 4 auf die Glei-
chung fiir die eine Groe 4 ist in dem nun zu be-
trachtenden Fall — zumindest mit jener Strenge —
nicht mehr méglich.

Der Unterschied zwischen den Definitionen (11 a)
und (11b) der Liicken-Matrix beriihrt nicht die all-
gemeine Struktur der iterierten Liicken-Gleichung

A(n’ "") :T(n, n’) an'(A)a (53)

worin F als Funktion der Liicken-Matrix zu verste-
hen ist. Daher hat die analog der Matrix 7(n,n’),
Gl. (49), nun jedoch mit Abschneiden in w statt
in € definierte Matrix 7 denselben entscheidenden
EinfluB auf die gegenseitige Grofenordnung der
A(n,n’) wie im vorigen Abschnitt die Matrix 7. Im
Anhang 2 werden die Elemente 7(n,n") niherungs-
weise berechnet bzw. abgeschitzt. Diese Diskussion
ergibt, dafl die Vereinfachung

T(n,n') =70,y O(N—n) , (54)
bis auf Abweichungen um weniger als 1% zulassig
ist, solange die mittels

l&,|<100-

’
==Ly 25005

TD—nTci
2yTp
7 In :zT;

gekennzeichneten Schichtdicken-Intervalle [mit Gl.
(22): |€,| < 10 wp] ausgeschlossen werden und
auflerdem die Schichtdicke insgesamt durch

N2<0,8 u/op (56)

[mit Gl. (22): N <15 bzw. a <50 A] begrenzt
bleibt. Die Liicken-Gleichung reduziert sich unter
diesen Voraussetzungen auf die zu Gl. (29) analoge
Form

(55)

S(nnll)
2N+1

AL) AP AT”) S CO(m k) GLu(m” k)
1 m',m’'=1

.}, (57)

im Rahmen der Naherung (54) gesichert ist. Dar-
iiber hinaus kommt der Abschatzung (36) keine Be-
deutung fiir den vorliegenden Fall zu, weil ja durch
die Voraussetzung (54) schon Fehler nahe der Pro-
zentgrenze bedingt sind.

In Gl. (58) laBt sich sofort das €-Integral aus-
fithren, wobei die Integrationsgrenzen (€,, ) we-
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gen Gl. (54) durch (— ~, ) ersetzt werden diir-
fen:

1_ @N+) MY, 1

4na p

Da eine geschlossene Auswertung dieses Ausdrucks
mit einfachen Mitteln nicht méglich zu sein scheint,
betrachten wir zunichst die Grenzfille T=T, und
T =0 (Uberstreichung des T, soll wie bei 7 die De-
finition durch Abschneiden in @ andeuten, zum Un-
terschied von den mit Abschneiden in € erhaltenen
entsprechenden uniiberstrichenen Groflen).

@p
2

w=—wp

(59)

die explizit die Gestalt
Tp—nTe {

T,

/i

hat. Die an sich zweckméfigere Darstellung dieser
Relation durch ihre inverse Form T, =T,(T,) lieBe
sich nicht ohne weitere Naherungen gewinnen. Wir
verzichten deshalb auf ihre formale Wiedergabe und
verweisen statt ihrer auf Abb. 2.

=-10 gt

o i i 1 A A i 1 1 i o
10 12°K

Abb. 2. Relative Abweichung von T gegeniiber T bei Tp

=100 °K. Definition des Parameters »: |€x| = » Tp bzw.

€y +1=—» Tp. Die Kurve mit »= —oc entspricht der null-

ten Naherung, Gl. (62), die iibrigen Kurven folgen aus Gl.
(77) fiir deren Giiltigkeitsgrenzen und N =2.

Die Neuformulierung von Gl. (11 a) in der Form
(11b) &duBert sich also in einer VergroBerung der
T .-Werte vermoge eines selbst T.-abhiangigen Fak-
tors und ist in Abb. 1 durch die gegeniiber der Kurve
T, angehobenen Kurvenstiicke T, dargestellt.

Die Grofle T hdangt vermoge Gl. (62) auBler von
T. auch noch von der Desve-Temperatur T bzw.
der DeByE-Frequenz op ab. Die Form dieser Abhian-
gigkeit wird demgemaill wesentlich durch Einzelhei-
ten der auf die w-Summation wirkenden Abschneide-

H. RAUFUSS

Als Bestimmungsgleichung fiir 7—"C ergibt sich aus
Gl (59) mit Gl. (A 2.8)

CQN+1)Y MV, _
1= ’g;i:_la‘Ao Te (60)
Wir erhalten aus dem Vergleich dieser Formel mit
dem entsprechenden friitheren Ergebnis, Gln. (43)
und (44), bei demselben Wert der Schichtdicke a
wie auch des Kopplungsparameters ¥V, die einfache

Beziehung

Tc=fc, (61)
s G nszca (TD+ﬂ T;:) - } (62)
2Tp(Tp—a Te) (Tp+27 Te) (Tp+3 7 Te)

vorschrift beeinflut. Fiir eine Rechnung praktikabel,
wenn auch sicherlich zu weitgehend idealisiert, ist
wohl nur die fiir Gl. (11b) gewihlte Form. Ware
die Abschneidevorschrift in Gl. (11 b) mittels eines
fiir w = wp stetig abklingenden Dampfungsfaktors
statt der in den Summationsgrenzen verarbeiteten
Stufenfunktion @ (wp—|w|) formuliert worden,
hitte sich vermutlich eine geringere Differenz zwi-
schen T und T ergeben.

Das Verhalten der Liicken-Funktion A(z) im
Grenzfall T =T, wird in der soweit behandelten Na-
herung (54) wiederum durch Gl. (47) beschrieben.

Der andere Grenzfall, T =0, erlaubt den Uber-

gang von der w-Summe zum w-Integral, so da3 Gl.

(59) in die mit Gl. (50) identische Beziehung

4:ta‘

1
AO = Wp sh 7(27N—F])7M“Vo—] (63)

tibergeht.

Um iiber die bisher in diesem Abschnitt benutzte
Naherung (54) hinauszukommen, wollen wir nun
noch am Grenzfall der kritischen Temperatur den
Einflul der n-Abhéngigkeit der Diagonalelemente
T.(n) diskutieren. Dabei soll weiterhin die Bedin-
gung (56) gelten, die einmal die AuBerdiagonal-
elemente 7.(n,n’) unberiicksichtigt zu lassen gestat-
tet, die aber zum anderen auch eine erhebliche Ver-
einfachung des an die Stelle von Gl. (54) tretenden
Ansatzes erlaubt. Es geniigt namlich, entweder allein
die Abweichung des Elements 7.(N) von 7, in Rech-
nung zu stellen oder allein die des Elements 7. (V + 1)

von dem Wert Null.
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Beginnen wir mit dem ersten Fall: Der Ansatz

lautet mit den Gln. (A 2.7), (A2.8) und (A2.13)

To ... n<N,
T(n) =17, —07%(N)... n=N, (64)
0 .n>N.

Die Liicken-Gleichung schreibt sich zunichst unter
Benutzung der Gln. (43) und (44)

N
(2N+1) 7o 4(n) —7.(n) {A(n) 2 N A(l)} =0
=1
(65)
und mit Gl. (59) bei formal zu 7.(n) analogem An-
satz fiir 4(n)
2N+1) (Fe—7.) 4— 27.04(N) =0, (66)
(2N +1) (fc_Tc_afc(N))A'f'

[(2N+1) t.—37. +307.(N)]04(N)=0. (67)
Die zugehérige Determinanten-Bedingung
(Te— 1) 2+ [2 N 7o+ 6% (N) ] (7. — )

+27,0T,(N)=0 (68)
definiert die Ubergangstemperatur 7. lhre Auf-
l6sung ist gendhert

= |
To—Te= TV—étC(N). (69)
Diese Beziehung tritt also fiir die durch
—10wp<ey<—-3wp (70)

definierten Schichtdicken-Intervalle an die Stelle von
Gl. (62).

5T
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Ganz entsprechend verlduft die Ableitung fiir die
Intervalle

3Q)D56‘v5100)[), (71)
fiir die man
T, ...n<N,
T(n) =107 (N+1)... n=N+1, (72)
0 .n>N+1

anzusetzen hat. Den Gln. (66) und (67) entspricht
jetzt das System

(2N+1) (Fe—70) 4— 27, 04(N+1) =0

(73)
2N (N+1) 4+ (74)
[N+1)7. —307,(N+1)] 04(N+1) =0,

und die Determinanten-Bedingung fiihrt auf die Lo-
sung

To—Tors — 0T, (N +1). (75)
Wegen Gl. (56) fallt jeweils die Korrektur in Gl.
(69) oder die in Gl. (75) — wenn nicht gar beide

— in die zugelassene Rechenungenauigkeit, und da-
her kénnen beide Beziehungen zu

- 1 = 4N -
Te—Te= 3 0%(N) — 5y 7y 0%(V+1)  (76)
zusammengefat werden. Mit den Gln. (A 2.12) und

(A 2.13) wird daraus explizit

a3 T3 (Tp+a Te)

= Tp—a T,
_7. To—aTe { _
To=Te =7, €XP | 571pTpraTe

Tp—a Te 1

und diese Naherung unterliegt, abgesehen von Gl.
(56), nur noch der Einschrankung Gl. (A 2.6). Aus
Gl. (77) liest man ab, daBl beide Korrekturen im
Sinne einer Abflachung des Resonanzverhaltens wir-
ken. Sie spielen eine merkliche Rolle nur bei den
ersten Resonanzen, d.h. fiir kleine N.

4. Vergleich mit den Ergebnissen von Thompson
und Blatt sowie von Falk

Bei der formalen Behandlung in den vorangehen-
den Abschnitten haben wir uns um die Einhaltung
einer bestimmten Rechengenauigkeit bemiiht, so daf3
wir nun in der Lage sind, die Giiltigkeit der von

2Tp(Tp—a Te) (To+2 7 Te) (Tp+3 7 Te)
4N

+“( T @N+1 é——)]’

T N!Gj\'l (2N+1)2enN+1

(77)

TrompsoN und Brarr wie auch von FaLk gewonne-
nen Aussagen zu beurteilen.

Die erste Frage betraf die Giiltigkeit des BSC-
reduzierten Ansatzes der Zwei-Teilchen-Wechselwir-
kung auch im Fall von Schichtgeometrie des Supra-
leiters. Auf diesem Ansatz beruht die Rechnung von
TuompsoN und Brarr2. Da jene Arbeit vom Ab-
schneiden in € ausgeht, beziehen wir uns zum Ver-
gleich der BSC-Methode mit dem Gorkov-Formalis-
mus zundchst auf die Rechnung von Abschnitt 2.

Der mit der Gorkov-Theorie gegeniiber dem BSC-
Ansatz erreichte Gewinn an Allgemeinheit auflert
sich danach genau in dem Reihenrest R, der Gl. (34),

der aus der vollstindigen Beriicksichtigung der Zwi-
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schenzustdnde in den hoheren Gliedern der Entwick-
lung (29) resultierte. Um also die Gorkov-Gleichun-
gen (24), (25) und (26) auf eine zur BSC-Liicken-
Gleichung &dquivalente Form zu reduzieren, hitte
man lediglich die m-Summationen in den Gln. (25)
und (26) ebenfalls der Abschneidevorschrift zu un-
terwerfen. Gl. (40) zeigt, da} der quantitative Unter-
schied zwischen den beiden Ansatzen véllig belanglos
ist.

Von geringfiigigen Fehlern (< 1%), die aus der
unterdriickten n-Abhéngigkeit der Liicken-Matrix-
Elemente erwachsen, abgesehen fithrt die Rechnung
mit Abschneiden in w auf dieselbe explizite a-Ab-
hingigkeit des Liicken-Parameters wie zuvor die
Rechnung mit Abschneiden in € [GIn. (63) und
(50) ]. Diese Identitat war zu erwarten; denn in bei-
den Fillen bedingt der Ubergang 7— 0 den Uber-
gang von der w-Summation zur o-Integration, so
daf3 iiber einen in € und @ symmetrischen Integran-
den beziiglich beider Variablen integriert werden
muf}. Damit verschwindet aber in diesem Grenzfall
der Wesensunterschied zwischen dem Abschneiden in
€ und dem in .

Der von TrompsoN und Bratr benutzte Ansatz ist
also zumindest bei Beachtung der Bedingungen (55)
und (56) durch das Resultat, Gl. (63), gerechtfertigt.

Die von FaLk durchgefiihrte Rechnung miifite
nach dem zuletzt Gesagten zwangsliufig auf das
Trompsonsche Resultat fithren. Die Notwendigkeit
der numerischen Anpassung mittels eines geeignet zu
wiahlenden Parameterwertes (4= 0,82 in ¢) hat zwei
Griinde. Der erste besteht in dem Ansatz 4(z) =4
=const, der das Auftreten der Faltungs-Faktoren
S(n,n’,1,I') in den Gorkov-Gleichungen verhindert
und an ihre Stelle einfache Kronecker-d-Faktoren
setzt. Die Folge ist ein Faktor 2 N statt 2N +1 in
Gl. (63), ein Unterschied, der sich bei kleinen N
deutlich bemerkbar macht.

Die hierdurch verursachte Abweichung vom Er-
gebnis von TuompsoN und Brarr konnte nicht ohne
eine zusatzliche Freiheit beseitigt werden. Eine solche
wurde aber gerade in Form der Mittelungsvorschrift
geschaffen, verméoge deren die z-abhéngige erste Ite-
ration der Liicken-Funktion mit dem Ansatz in Be-
ziehung gesetzt wird. Diese Vorschrift, nach der
Fark die Mittelung nicht auf die wahre Schichtdicke,
sondern auf eine Art Halbwertsdicke der Verteilung
der supraleitenden Elektronen bezieht, ist, wie die
Rechnungen der Abschnitte 2 und 3 zeigen, vom for-
malen Standpunkt aus iiberfliissig.

H. RAUFUSS

Ferner wurde von FaLk bemerkt, daf die zunachst
nur fir T=0 erhaltene Liicken-Gleichung nach Er-
weiterung des Energie-Integranden um einen Faktor
th 34 E auf den gesamten ,supraleitenden“ Tempe-
raturbereich 0 < T < T, angewandt werden konne.
Bei Abschneiden in € ergibt dies, wie wir aus Gl.
(42) ersahen, tatsachlich die richtige Beziehung. Die
Behandlung des Problems in Abschnitt3 zeigte je-
doch, daB fiir groBere Werte der kritischen Tempe-
ratur quantitativ durchaus wesentliche Abweichungen
zwischen den mit beiden Abschneide-Formulierungen
gewonnenen Resultaten bestehen. Diese Unterschiede
sind hauptsdchlich eine Folge der Anwendung der
Gl. (A 2.10) auf Gl. (61) und wachsen mit der Tem-
peratur. Die prozentualen Unterschiede zwischen T
und T, , wie sie in Gl. (77) zum Ausdruck kommen,
konnen daher sogleich auch als obere Grenze ent-
sprechender Differenzen des Liicken-Parameters im
Temperaturbereich 0 <7 < T, gelten.

Die bei Abschneiden in € innerhalb gewisser Gren-
zen giiltige Beziehung (52)

4,(a) =const-T.(a),

gilt in vergleichbarer Naherung nicht mehr, sobald
die beiden darin verkniipften Grofen auf der Grund-
lage der w-Abschneide-Operation ermittelt sind;
denn dem durch Gl. (77) beschriebenen Unterschied
zwischen T, und T, steht keine entsprechende Ver-
schiedenheit bei der Liicken-Funktion 4,(a) gegen-
tiber.

Herrn Prof. Dr. G. Lipers danke ich fiir die An-
regung dieser Arbeit und fiir ihre stete Forderung.

Anhang

1. Auswertung des Korrekturterms R,

Die in Gl. (34) auftretende Grofle R, umfallt ge-
méf ihrer Definition genau alle jene Einzelterme
der Entwicklung (29), in denen sich mindestens eine
der m-Summationen von N + 1 bis oo erstreckt. Wir
klassifizieren die durch R, dargestellte Gesamtheit
von Termen nach der Zahl dieser in jedem Einzel-
beitrag vorkommenden von N +1 bis o« laufenden
m-Summationen, und iberzeugen uns sogleich da-
von, daB auf diese Weise eine groBenordnungs-
miéBige Unterteilung in R, erreicht ist. Dazu braucht
man nur den ungiinstigsten Fall m=/N +1 zu be-
trachten, fiir den unter Beriicksichtigung von Gl.(23)
und (19)

n? 2N+1

i s [(N+1)2—N2] = 20 >

Nt 10 H
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wird, so daB die mit diesem €,,; gebildete G®-Funktion nicht die GréBenordnung 10/x iiberschreiten kann,
wihrend die G°-Faktoren fiir Quantenzahlen m < N immerhin die GroBenordnung 1/4 erreichen.

Wir betrachten also zunéchst alle jene Einzelterme, in denen gerade eine m-Summation von N +1 bis
lauft. Ihre Gesamtheit kann durch

= 2v 4 42 1

v 1) . . S

,é'o,gl ( 1) (2N+1)2 (wz'f‘evzvk) (—iw+eEnk) (w+Es+2r,k) (A 11)
dargestellt werden, worin zur Abkiirzung s=2/N — (n—2) gesetzt ist. In einem Term, der 2v+2
GO-Faktoren enthalt, kann [vgl. dazu Gl. (31)] die unbeschriankte m-Summation in jedem der 2% inne-
ren G°Faktoren auftreten. Die aus der Identitat aller dieser Beitrdge resultierenden Vielfachheit wird in
Gl. (A1.1) durch den Faktor 2» in Rechnung gestellt. — Die S-Faktoren beschrinken die r-Summa-

tion, d. h. wegen m =s+ 2r die m-Summation, in der angegebenen Weise.

Das Produkt der beiden unpaarigen G°Faktoren in Gl. (A 1.1) wird nun zuerst durch Partialbruchzer-
legung in eine Summe aus zwei Termen zerlegt, die sogleich mit ihrem jeweiligen Konjugiert-Komplexen
erweitert werden. Die dabei entstehenden in @ ungeraden Anteile konnen sofort unterdriickt werden, da
sie spatestens bei der symmetrisch auszufiihrenden w-Summation wegfielen. Es bleibt also vorerst

1 ( _ Enk Es+2r.k )

Es+or,ktEnk w?+ Ex W2 +€

(A1.2)

Wihrend €, innerhalb des Integrations-Intervalls [ —wp , wp] variiert, durchlauft €;, 5, ; das Intervall

4(N 1) (N+r—n+1 4(N 1) (N+r— 1
(N+r+ )1(\'2+r n+llu_wD’ (N+r+ );/2+r n+),u+wn] (A1.3)

d. h., diese Variable ist grof} gegeniiber €,; und genédhert konstant. Man kann den ersten Faktor in Gl.
(A1.2) entwickeln und mit dem zweiten zusammenfassen. Die symmetrische Integration beziiglich €, ge-
stattet, die mit einem in €,; ungeraden Faktor behafteten Anteile schon hier auszulassen. Von den ver-
bleibenden Gliedern kommen nur noch die von niedrigster, d.h. zweiter Ordnung in 1/€;,s, ; fiir die
beabsichtigte Naherung in Betracht. Damit wird aus dem Formelteil (A 1.2)
1 € 1
B e e

(A14)

€horp @ +EL
Setzen wir nun dieses in Gl. (A 1.1) ein und fiihren die »-Summation aus, dann bleibt nach einfachen Um-
formungen

3 242 nZl 2
. 2 . Az .w+e,;7,,‘_§‘ . ’1 . e,.,,’ 12 ) (A1.5)
2N+1)2 *+En o*+Ex S ey W HEnR LS NS
Im zweiten Summanden diirfen wir sogar noch w? gegeniiber E€30,; vernachldssigen, weil das asymptoti-
sche Verhalten dieses Anteils dadurch lediglich auf 1/w? reduziert wird, was aber fiir die Konvergenz der
w-Summation noch ausreicht. Mit dieser Vernachldssigung nimmt der Beitrag (A 1.1) schlieBlich die Ge-
stalt

2 Aw? sl g2
T @N+D? (@+EW® 5) Ehs

(A1.6)

an. Als Folge der symmetrischen ®w-Summation und €-Integration sind also alle Beitrige der Ordnung
=A/u ausgefallen, und es bleibt als Hauptkorrekturterm ein solcher der Ordnung a?~=107".

Damit ergibt sich aber die Notwendigkeit, auch diejenigen Terme von R, zu beriicksichtigen, die zwei von
N +1 bis « laufende m-Summen enthalten. Dadurch kommen insgesamt noch sechs strukturell verschie-
dene Termserien ins Spiel, die einzeln nach dem obigen Muster auszuwerten sind. Wir verzichten hier aber
auf die Wiedergabe der Rechnungen und geben sogleich deren Resultat an. Der Korrekturterm der Ord-
nung a? lautet insgesamt
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R(l)*_idi‘ : A,,, . n‘:l ,*1,,_ _9’,2 o N, 1 - {1ik, +
" @N+D® 0 +EL | [S) €hars |0 +HER 2N+ 0*+ER
P - (~ 3 &£, Lo ,,,,,A‘,ﬁ,))
@N+DE\ 2 o'+EL, T2 (@itER)? T4 (P EER)t
1 n—2 n= l Az
VWV e . o . S
+2N+1 r=0r=r+1 Es+er,k" Es+2r',k‘ it w?+Epy

1 42 A2 0 A4

HEY ES (— 3trEn ThiarEnT 4 Ta;é‘+‘E,,k>=)” o LT

Wir interessieren uns lediglich fiir eine obere Schranke des Betrages von R(. Dazu werden alle negativen
Vorzeichen durch positive ersetzt. Dann kann die erste geschweifte Klammer durch den Zahlenwert3 und
die zweite durch 7 majorisiert werden, wenn u.a. fir N der Minimalwert1 benutzt wird. Die r- und
r’-Abhingigkeit wird unter VergroBerung der betreffenden € -Faktoren mittels r =r" =0 beseitigt und dar-
aufhin die 7- und r’-Summation ausgefiihrt. Man erhilt

10N u? A4 2

R < N1 ey ot (A18)
und mit dem gemal} Gl. (23) groflten zuldssigen Wert V=20 ergibt das
| RV <4 g o™ (A1.9)
2. Berechnung der Matrixelemente 7 (n,n’)
Die Elemente der Matrix 7 sind analog Gl. (49) durch
) = '2711‘47 S fek (—iw+enkl) Gotenn) (&I)

w=—wp

definiert. Nach Umwandlung des Integrals in ein solches beziiglich der Variablen ¢; und Partialbruchzer-
legung ebenfalls beziiglich ¢, werden die komplexen Nenner mit ihren konjugierten Ausdriicken erweitert
und die dadurch im Zihler entstehenden Klammern ausmultipliziert. Der Imaginérteil hat die Form
o F(w?), liefert also in Anbetracht der symmetrisch auszufiilhrenden ®-Summation keinen Beitrag. Der
Realteil lautet nach geeigneter Zusammenfassung

U S T B W 2 W —Cnk(En—tn) | 2 W+Enk(en—tn)
Wit ) = 3 00y + @+ (en—en)? /dek{ @*+Ep T @*+ € ’ (A2.2)
0
woraus durch Integration unmittelbar der Ausdruck
s _ L)1 e (en—mto® | 2]e| €n _ En
7(n,n') = 3 w=ewn{ 5 G ott En—tn)® B (en— )t o? S bt (en—ey)? \ T ATCIE T —arctg
(A2.3)
entsteht. Fiir die Diagonalelemente vereinfacht sich ersetzt, was einen Fehler von maximal 1% bedingt,
diese Formel zu solange
) o1 w1 [a o €1 €| =3 wp (A2.6)
7(n,n)=17(n) = B o= Tl |2 —arctgy o

(A24) bleibt. Diese Bedingung ist also etwas einschneiden-
’ der als die analoge Bedingung |€,| = wp, durch

Der darin auftretende arc tg wird durch die im Abschnitt 2 die Resonanzintervalle von der
- = leo] Betrachtung ausgeschlossen wurden. Gl. (A 2.4) und

bl P T~ 2 s8n S R (A2.5)  (A.2.5) zusammen liefern fiir die Diagonalelemente
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1 ) 14 1
ﬂw:_%{]w[—a}... n<N,
T7(n) = on
;’ _\_' ?1” .n>N.
’ (A2.7)

Zur Auswertung der Summen haben wir auf die De-
finition (7) zuriickzugreifen, mit der sich der Haupt-
term in der Gestalt

koo
}; 211 (A2.8)
schreibt, wenn auBlerdem
Tp—aT
Ip= T (A2.9)

([«] = groBte ganze Zahl < z) definiert wird. Mit
Hilfe der Formel ?
o1 1
L % =Ctinnty 2 T 12n(n+1)
1

T 12n(m+1l) (42) 7 (A2.10)

(C =1n y = EvLersche Konstante = 0,57721 . . .)
kann Gl. (A 2.8) zu

21])—%—1 - 5
T 120p@Ip+1)

+... (A211)

T=C+In2(2lp+1) +In

Ip+1
2ip2Ip+1) 2Ip+3) 2Ip+4)

+

umgeformt werden. Indem wir diese Gleichung wie-
der mit der urspriinglichen T-Abhéngigkeit schrei-
ben, unterdriicken wir jedoch die eckigen aus Gl.
(A 2.9) herriihrenden Klammern. Dadurch werden
lediglich gewisse Details im Verlauf von 7(T') unter-
driickt, die eine offenbar uninteressante Folge der
scharfen Definition des Abschneidewertes wp sind.
Dann ist

997

_ 2y Tp Tp 5 a2 T?
t=In I T T S§Toap—aD) T
A T3(Tp+aT)
T 2 TpTp—nT)Tp+2aT) (Tpi3aT) T 5" °
(A2.12)

Die Korrekturglieder in Gl. (A 2.7) sind einfach
auszuwerten und ergeben
In _
5t(n) 14 \‘2_,TD aT

lenl =7 aleal

(A 2.13)

Nur fiir 3wp < ]En} < 10 wp bedingen diese eine
Verbesserung des Hauptterms (A 1.12) um mehr
als 1%.

Bei den AufBlerdiagonalelementen begniigen wir
uns mit einer Abschdtzung ihrer (auf 7 bezogenen)
GroBenordnung. Die Matrixelemente werden majo-
risiert durch

l
Ne | 8227 T Enl,
]t(n’n)[<li-0{ (en—en )2(21+1) +€n’_€nln€n’}

(A2.14)
Nach Ausfihrung der l-Summation ist das

(Tp+=T)2 Tp+xT €n
"t(n n)|<2 (en—tn)® +ﬂ(3n—€n)lné;t’7'
(A 2.15)

Bei der Wahl der Werte (22) bleibt fiir den ungiin-
stigsten Fall, n=1, n’ =3

5% fir N<10,
]r(l 3 S11% fir NZ15, (A 2.16)
5% fir NZ20,

wihrend alle iibrigen 7(n,n’) noch deutlich unter
diesen Werten bleiben. Diese Gegeniiberstellung
zeigt wiederum, dall gewisse einschrinkende Bedin-
gungen im Fall der Behandlung des Problems mit
Abschneiden in w schirfer gefalit werden miissen als

bei Abschneiden in €.

9 K. Rorrmany, Mathematische Formelsammlung, BI-Hochschul-Taschenbuch 13, Mannheim 1960.



