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The GORKOV equations are solved for ideal planar films of superconductors. For the purpose of 
comparison, two different formulations of the self-consistency condition are used; the first is 
characterised by a cut-off factor in the energy integral, the second by the termination of the 
co summation at the same cut-off value. Certain values of the film thickness (those corresponding 
to resonance intervalls in the sense of THOMPSON and BLATT) are excluded, but they are not decisive 
to this treatment. By this means, a fairly accurate check of the error in the approximation is made 
possible. This allows a quantitative comparison of the critical temperatures and of the two forms 
of the gap function calculated from the two formulations of the basic equations. 

At absolute zero, both formulations of the theory become equivalent and lead to essentially 
identical relations between the gap function and film thickness. However, the critical temperature 
which results from the termination of the co summation is noticeably higher than that calculated 
with the help of the energy cut-off. 

In dem gleichen Maße, wie die experimentelle Er-
forschung der Phänomene der Supraleitung auf im-
mer dünnere Aufdampfschichten ausgedehnt wurde, 
stellte sich immer deutlicher die Frage nach den 
möglichen quantenmechanischen Auswirkungen die-
ser Annäherung der Schichtdicken an atomare Grö-
ßenordnungen. 

Als erste haben B L A T T und T H O M P S O N 1 ' 2 diese 
Frage aufgegriffen. Sie beschrieben das Ein-Teilchen-
Verhalten der Elektronen mittels eines unendlich 
hohen Kastenpotentials 2, wie es durch das Ergebnis 
der vorausgegangenen maschinellen Rechnung1 

nahegelegt war. Als Modell für die Zwei-Teilchen-
Wechselwirkung diente — in der Ortsdarstellung — 
wie bei G O R K O V 3 das Kontaktpotential. In der Im-
pulsdarstellung wurden dessen Matrixelemente in 
der seit BCS 4 eingebürgerten Weise vereinfacht. Un-
ter anderem wurde die vom Kontaktpotential in der 
Lücken-Gleichung (Gap-Gleichung) hervorgerufene 
Divergenz durch eine energieabhängige Beschrän-
kung 5 der an der supraleitenden Wechselwirkung 
beteiligten Ein-Teilchen-Zustände vermieden. Dabei 
blieb dahingestellt, ob die Benutzung dieser BSC-
reduzierten Form der Wechselwirkung auch unter 
den nunmehr betrachteten, völlig andersartigen geo-
metrischen Verhältnissen ihre Berechtigung behält. 

Als Resultat fanden die Autoren eine resonanz-

* D 7, Göttingen 1966. 
1 J. M . BLATT U. C . J. THOMPSON, Phys. Rev. Letters 1 0 , 332 

[1963], 
2 C. J . THOMPSON U. J . M . BLATT, Physics Letters 5 , 6 [ 1 9 6 3 ] . 
3 L. P. GORKOV, J. Exp. Theor. Phys. USSR 34, 735 [1958] ; 

engl. Übers. Soviet Phys.-JETP 7, 505 [1958], 

artige Schichtdickenabhängigkeit des Lücken-Para-
meters beim absoluten Temperaturnullpunkt. 

Kurz nach der Arbeit von T H O M P S O N und B L A T T 

erschien eine Arbeit von F A L K 6, in der dasselbe Pro-
blem u. a. nochmals, nun allerdings mit den analyti-
schen Mitteln der GREEN-Funktionen formuliert 
wurde. Im Rahmen dieser Rechenmethode bot sich 
sogleich auch der natürlichere Weg zur Vermeidung 
der durch die Kontakt-Wechselwirkung verursachten 
Divergenz an. Er besteht in der Einschränkung der 
in diesem Formalimus auftretenden co-Summation 7 

statt einer Begrenzung des Energie-Intervalls. 
F A L K löste die GORKOV-Gleichungen für die G R E E N -

Funktionen des Supraleiters mit zunächst konstant 
ausgesetztem Paarpotential A(x) = A und gewann 
durch Einsetzen des damit erhaltenen F^ (x, x) in 
die Selbstkonsistenzbedingung eine erste, nun echt 
x-abhängige Iteration von A (x). Diese wurde über 
eine Mittelungsvorschrift mit der konstanten Aus-
gangsgröße A in Beziehung gesetzt und aus diesem 
Zusammenhang die Schichtdickenabhängigkeit des 
Lücken-Parameters A beim Temperaturnullpunkt 
entnommen. Bei geeigneter Wahl eines gewissen 
Parameters A, der u. a. eine Folge der speziellen 
Definition der Mittelung ist, läßt sich — soweit mit-
geteilt wurde — quantitative Übereinstimmung mit 
dem Resultat von T H O M P S O N und B L A T T erzielen. 

4 J. BARDEEN, L. N. COOPER U. J. R. SCHRIEFFER, Phys. Rev. 
108, 1175 [1957]. 

5 Diese Cut-off-Operation nennen wir kurz „Abschneiden in e ' „ 
6 D. S . FALK, Phys. Rev. 132, 1576 [1963]. 
7 Im folgenden kurz als „Abschneiden in co" bezeichnet. 
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Die Erweiterung der Gültigkeit dieses Ergebnisses 
auf den ganzen supraleitenden Temperaturbereich 
bis hinauf zur Ubergangstemperatur Tc wurde von 
F A L K in einer Fußnote besprochen, wobei unklar 
bleibt, wie weit die dort gemachten Angaben auf 
Rechnungen beruhen bzw. eine Vermutung darstel-
len. Danach soll sich die Berücksichtigung endlicher 
Temperaturen lediglich in einem zusätzlichen Faktor 
th E unter dem Energieintegral der Lücken-Glei-
chung auswirken, also gerade so, wie es sich schon 
bei der Behandlung des translations-invarianten 
Supraleiters unter Beschränkung der Energie-Inte-
gration ergab. 

Die Resultate von T H O M P S O N und B L A T T wie auch 
von F A L K beruhen alle auf gewissen vereinfachenden 

Annahmen; es soll der Zweck dieser Arbeit sein, 
einige der Fragen zu beantworten, die mit der Be-
urteilung der Güte dieser Näherungen zusammen-
hängen. 

In Abschnitt 1 werden die im weiteren benötigten 
Ausgangsgleichungen bereitgestellt. Die Lösung der 
GORKOV-Gleichungen bei Abschneiden in e ist weit-
gehend näherungsfrei möglich und wird — um als 
Anhalt bei der in Abschnitt 3 dargelegten, nicht ganz 
so geschlossen durchführbaren Auswertung des mit 
Abschneiden in <JJ formulierten Gleichungssystems 
dienen zu können — diesem in Abschnitt 2 voran-
gestellt. In Abschnitt 4 endlich werden die zuvor ge-
wonnenen Aussagen mit den Ergebnissen der ge-
nannten Autoren verglichen. 

1. Bereitstellung der Grundgleichungen 

Die Beschreibung des Ein-Teilchen-Verhaltens der Elektronen in einer supraleitenden Schicht der Dicke a 
schließen wir an die Formulierung von T H O M P S O N und B L A T T an. 

Aus der ScHRÖDiNGER-Gleichung mit dem Ein-Teilchen-Potential 

r / , , / 0 für 0 < x < a \ ^ ^ 
F ( x ) = U für x ^ O , agx)' °° (1) 

folgen mit h = 1 die auf dem Periodizitätsquader (a, L, L) normierten Ein-Teilchen-Wellenfunktionen 

?nk (X r) = ~ sin * * x exp i k r (2) 

mit den Impulskomponenten 8 

L _ l71 b - 2 "2/5 i 2nzn , , 0 Kx— , Ky — £ , Kz — £ , n, _L Tly, _!_ rig — 1, O, . . . . 

Im Grenzfall L—>00 besetzen die Ein-Teilchen-Zustände eine Schar zu k}J, kz paralleler und in &r-Richtung 
äquidistanter Ebenen; wir werden sie kurz ^-Ebenen nennen. 

Als Zwei-Teilchen-Bewegungsgleichungen dienen die mit der Kontaktwechselwirkung 

i;(R-R) = -V0Ö(R-R'), R=(x,r) (3) 

mit ortsunabhängigem Kopplungsparameter F 0 > 0 zu gewinnenden GORKOV-Gleichungen 3 

(ia>,+ y ü A r - VW +l")G„1(x,x,r-r') +A(x) F+t{x,x',r-r') = d(x-x') < 3 ( r - r ' ) . (4) 

(icoi- +V(x)-Ju])FUx,x,r-r')+A(x) Gw {x, x, r - r ' ) = 0 (5) 
für die GREEN-Funktionen G M und Ft , . Die reell wählbare und gewählte Lücken-Funktion A(x) ist durch 
die Beziehung 

A(x) = Vß° lFtt(x,x, 0) (6) 

8 Die den Impulskomponenten kx und k entsprechenden Ener-
gien werden später entweder als e notiert, wenn sie sich auf 
den Ursprung des Impulsraumes beziehen, oder als e wenn 
sie auf das chemische Potential u reduziert sind. Infolgedes-
sen bestehen mit (M=Elektronmasse) 

1 iruiY 1 , , 
£ n = 2 M \ a ) ' £ k = 2 M k ' £ » k = = E n + £ k 

die Beziehungen 

Erik = e« + Ek = £n+ 6* = £nk~ " • 



definiert. Darin bedeutet wie üblich (mit &B = 1) ß die reziproke Temperatur, T 1. Ferner ist 

( 2 Z + 1 ) nT ±1 = 0 , 1 , 2 , . . . (7) 

Der Index l an der Variablen co möge einfacherer Schreibweise halber vorläufig unterdrückt werden. 
Als Folge der Verwendung des Kontaktpotentials (3) divergiert der Ausdruck (6) . Es ist u.a. das Ziel 

dieser Arbeit, die aus den beiden hauptsächlich benutzten Abschneide-Verfahren folgenden Resultate quan-
titativ zu vergleichen. Die explizite Formulierung erfolgt zweckmäßig in (n, k) -Darstellung, zu der man mit-
tels der FouRiER-Transformation 

1 °° n t x n T x 
Gu(x, x , r) = „ ^ /d2fc Gain, n, k) sin ——sin " exp i k r , (8) 

Z n a n, n'—l a a 

j oo n 71 x n ix' 
Ft ix, X, r) = 2 ~ j t ? / ^ F " (n> s i n 71 ~cT sin n a X exp i ^ r ^ 

übergeht. Für die Lücken-Funktion ist die Darstellung 
J oo , 

At \ 4 SP A t • n 7i x . n TT x , l f l , 
A 0*0 = 9 A/ , z A ( « » n ) s i n ~ s i n — - — (10) 

* n "f"1 n,n' = 1 " " 

möglich, wenn man die Matrix A durch 

A n'} = ? ^ F i ( n ' ( 1 1 } 

definiert. Die transformierten GORKOV-Gleichungen nehmen dann die Gestalt 

iico-enk)Gcoin,n',k) + f AU,l') f F$(m,n',k)Si™*P =önn', (12) 
1,1'= 1 m= 1 2 /V + i 

iio>+enk)Ft,in,n\k)+ f f G J m , n ' , f c ) = 0 (13) 
U ' = l »1=1 2 A + 1 

an. Die Faktoren 
a 

~ , 8 C , n 7i x . m 7i x . 171 x . V 7i x /-, A\ b ( n m l l ) = — / dz sin sin sin sin (14) 
a J a a a a 

0 

= — Öo,n + m + l-l' — n + m-l+l' ~ <V n-m + l + l' + \,n + m-l~l' 

+ \,n-m + l-l' + d<),n-m-l+l' — <V n - m - Z - Z' (15) 

fassen die Faltungseigenschaften der Produkte A-Ft und A Gw zusammen. In Gl. (15) ist der Anteil 
A), n + m + i + i' ausgelassen, weil alle vier Quantenzahlen 1 sind, ihre Summe also nicht verschwinden kann. 

Das ursprünglich auf BCS zurückgehende Abschneide-Verfahren (Abschneiden in der Energie e ) läßt 
sich nun mit der Stufenfunktion 

r\ t \ 11 für x > 0 , , s 
0 ( x ) = j o für a: < 0 ' ( 1 6 ) 

und der Abkürzung &n k = 0 ( O > d — ; snfc |), worin w D die DEBVE-Frequenz bedeutet, durch 

A in, n) = ° Jt^ fd2k 0nk On'k F £ in, n\ k) ( I I a ) 

ausdrücken. 
Das in gewissem Sinne natürlichere „Abschneiden in co", das aus der Vorstellung einer durch retardier-

ten Phononaustausch vermittelten Elektron-Elektron-Wechselwirkung entwickelt wurde, liefert andererseits 
die Form 

A(n, n)= 1 f#kFtin,n\k). ( I I b ) 
» O) — —ft)n 



2. Lösung der Gorkov-Gleichungen 
bei Abschneiden in e 

Bei Zugrundelegung der Gl. ( I I a ) tragen wegen 
der ©-Faktoren unter dem Integral nur jene Ein-
Teilchen-Zustände zur Wechselwirkung bei, die in-
nerhalb der zum Ursprung des Impulsraumes kon-
zentrischen Kugelschale mit den durch die Energien 
jn + <x>D und ju — Wj) bestimmten Radien liegen. Auf 
den /^-Ebenen mit EN ^ — COD sind dies Kreisring-
bereiche mit jeweils gleichem Flächeninhalt 2 TI ojp , 
bzw. Kreisscheiben, sofern | En | Wjy. Rechneri-
scher Einfachheit halber werden wir alle jene 
Schichtdickenintervalle (Resonanz-Intervalle im Sinne 
von T H O M P S O N und B L A T T ) von der Betrachtung aus-
schließen, für die die letzte Ungleichung gilt. 

Die durch eN <a» I ) <e A r + 1 definierte, von der 
Schichtdicke a abhängige Quantenzahl N nennt die 
Zahl der insgesamt an der Wechselwirkung beteilig-
ten Ä^-Niveaus und damit gleichzeitig den Rang der 
Lücken-Matrix A. 

Eine weitere rechnerische Vereinfachung erreichen 
wir durch die Forderung 

ja-coD + en /t + coD -£M + 1, n<^N- 1 , (17) 
die besagt, daß sämtliche oben genannten Kreisringe 
paarweise überlappungsfrei bezüglich ihrer ky, kz-
Erstreckung sind. Dadurch gilt in Gl. (11 a) 

®nk ®n'k = ®nk &nn > (18) 

also strenge Diagonalität der Lücken-Matrix A. Die 
Bedingung (17) läßt sich mit der für diese Zwecke 
genügend genauen Beziehung 

umformen zu 

( 2 0 ) 

Soll die Lücken-Matrix in allen Indizes diagonal 
sein, ist n = 1 zu setzen, so daß folgt 

i Z , • ( 2 1 ) 

Bei Verwendung der schon von T H O M P S O N und B L A T T 

benutzten Werte 

• 10 4 ° K und C O d ^ 1 0 2 O K (22 ) 

bedingt die Forderung (17) die Beschränkung auf 
den Bereich 

TV < 2 0 bzw. a 70 Ä . (23) 

Da aber das Resonanz-Verhalten der interessieren-
den Größen nach den Ergebnissen der genannten 
Autoren oberhalb dieses Schichtdickenbereichs schon 
weitgehend abgeklungen ist, bedeutet der Ausschluß 
größerer Schichtdicken keinen Verzicht auf wesent-
liches Detail. 

Mit Gl. (18) entsteht nun aus Gl. (11 a) 

A (n, n') = A (n ) K, n = ^ t ^ / " 2 ß2k Qnk F + (n, n, k) dn> n>, ( 2 4 ) 
° 7 1 a lJ co = — oo 

womit sich die GORKOV-Gleichungen zu 

(i ö) - £nk) Gw (n, n, k) + £ A (l) f F + (m, fc) = dn, „ . ( 2 5 ) 
1= 1 M = 1 / / V - J - I 

(i co + enk) F + (/», n\ k) + Y A (/) f G„ (m, n, k) = 0 ( 2 6 ) 
1=1 m= l +1 

vereinfachen. Mit der Abkürzung 

Gl (n, n, k)=(Z(n k) <5W, n- = j ^ - (27) i co —tnk 

für die GREEN-Funktion des normalleitenden Systems gewinnen wir durch Elimination von n, k) die 
Gleichung 

Ft (n,n',k) =G.i(nk) G°w(n k) | J(Z) 

-G_i(nk) Z A(l)A(l') V G i { m k ) F t { m \ n \ k ) ^ ^ ^ l l ) . (28) 
l,i'=t m,m'= 1 ^ / V - T - I ) 



Durch Iteration und Einsetzen in Gl. (24) erhalten wir schließlich 

N 
V A (/') A [l") A (/'") 2 GZ (m k) G (m" 

l',l",l"' = 1 m',m" = 1 

5 ( N M ' / ' / ' ) S ( M ' M " l" l") S (m" n /'" /"') ± . .. (2 A + l)3 (29) 

Diese störungstheoretische Entwicklung ist nunmehr wie üblich mittels Teilsummation über wenige Term-
typen auszuwerten. 

Zuerst führen wir den Ansatz A (/) =A'&(N-l) (30) 

ein, dessen näherungsweise Berechtigung sich am Ergebnis erweisen wird. Damit lautet der ( 2 v + l ) - t e 
Term in der Klammer von Gl. (29) 

N 
2 I G-a)(n k) Gl{m k)- . . .•G 0_ o (m(& ) k) Gi(nk) 

(2 T V + l ^ + l j. ;exp{2v+l} = l m\...,meip{2v} = l 

'S(nml'l')-S(m,m"l"l")- . . . -S{mW nl<*+V 1&+»), n^N. (31) 

Betrachten wir nun den Anteil dieses Ausdrucks, der Funktionen FZ{n,n',k) und G a { n , n , k ) in die 
durch Beschränkung aller Indizes m ^ auf die Werte GoitKov-Gleichungen verifizieren. 
1 bis N entsteht, dann können wir — da auch der 
Index n ^ N ist — von der Beziehung 

^ S(nmll) 
lki 2 ^ ' + ! 

, n, m ^ <N (32) 

Der Reihenrest Rn wird im Anhang 1 ausgewertet. 
Dabei zeigt sich, daß er nur noch Beiträge enthält, 
die von zweiter und höherer Ordnung in dem Ent-
wicklungsparameter a = A//^«lO-3 klein sind gegen 
den in Gl. (3) bereits abgespaltenen Hauptterm. Die 

Gebrauch machen. Damit gewinnen wir für besagte Abschätzung allein der Anteile der Ordnung a-
liefert Anteile sofort die einfache Form 

A2v + 1 
( - I ) ' " (cu2 + g ^ . ) " + 1 ' 

(33) R(1n>\< 
10 N 

( 2 A + 1) 2 £y+2,k o>2 + E l k 

so daß der Ausdrude (29) nach Summation der geo- Und mit den speziellen Werten von Gl. (22) 
metrischen Reihe aller Terme (33) als 

*»> - ̂ Bvr JLId2k e»k 
(34) 

Ä ( I > | < 4 

(35) 

(36) 
<o2+EL 

Nach Einführung von Zahlenfaktoren fn gemäß 

0 ^ / „ < l , n < ^ N (37) 
geschrieben werden kann. Hierin ist Enk = e-^ + co2, 
und Rn bedeutet die Gesamtheit aller jener Terme, k a n n d i e Abschätzung (36) formal als Gleichung ge-

schrieben werden, womit dann Gl. (34) die Form 

(2 iV+1) Vo 
A(n) = 

Z fd2k 6nk 0J2 + E l k 
{ 1 + 4 f n o ? ) (38) 

in denen mindestens eine m-Summation von N + 1 
bis oo läuft. 

Die Summation der obigen wie auch der in Rn 

noch auftretenden geometrischen Reihen unterliegt 
formal der Konvergenzbedingung A2 < co2 < or 
+ Enk j also wegen Gl. ( 7 ) : A(T) <JI T. Jedoch be-
rührt diese nicht die Allgemeingültigkeit der bei der annimmt. Die scheinbare n-Abhängigkeit des a-un-
Summation erhaltenen Funktionen. Diese Behaup- abhängigen Hauptterms beseitigen wir durch Uber-
tung läßt sich durch Einsetzen von A{n) sowie der gang zu der Integrationsvariablen enk, so daß die 
auf ganz entsprechendem Wege zu findenden GREEN- n, /Vindizierung außer an dem Faktor jn unterblei-



ben kann: 

A(n) = (2 7V + 1) V0 

a>D 

I / . 
)——OO J d e c ^ { l + 4 / " a 2 } - ( 3 9 ) 

Dies läßt sich schließlich noch umschreiben zu 
| A(n)-A < 4 a 2 , n = l , 2 , . . . , i V , (40) 

woraus wir — bis auf Abweichungen der Größen-
ordnung 10~6 — unmittelbar die Rechtfertigung für 
den Ansatz (30) entnehmen. 

Im weiteren wollen wir die zu a2 proportionale 
Korrektur in Anbetracht ihrer Geringfügigkeit außer 
acht lassen. Dann gewinnen wir durch Einsetzen der 
Beziehung 

I 2 00 1 
~E~th^ = T J L ( ? / + 1 ) « ( 4 1 } 

in Gl. (38) als implizite Bestimmung für den Lük-
ken-Parameter A(T, a, N) die Gleichung 

1 = (2 7V + 1) t i l i f d e * W ß + £ . ( 4 2 ) 
7ia J ]/e2+A2 ' 

Leicht ist nun der Grenzfall A - > 0 zu behandeln, 
durch den bei einem Übergang zweiter Art die Über-
gangstemperatur Tc definiert ist. Aus Gl. (29) folgt, 
daß in diesem Falle alle Glieder höherer Ordnung 
in A gegenüber dem linearen Term verschwinden. 
Das bedeutet die sogar exakte Gültigkeit von Gl. (42) 
mit A = 0. Die Bestimmungsgleichung für Tc lautet 
deshalb 

1 = 
(2 7V + 1) 

4 71 

w 

' V ° M J I de th hße 
(43) 

Unter der Bedingung Tc ^ TD = kann in prak-
tisch ausreichender Näherung 

o) [) 

th \ ßce In 2y TD 
71 Tc 

\ny = C = 0,577 2 1 . . . (44) 

gesetzt werden, womit sich die Möglichkeit der ex-
pliziten Darstellung 

4 7i a 
(2 N + l) M Ve 

der kritischen Temperatur Tc als Funktion der 
Schichtdicke bietet. Die Funktion Tc weist keine ex-
plizite Abhängigkeit vom chemischen Potential /< 
auf. Dieses geht aber implizit und durchaus entschei-
dend über die Definition 

= 
7r2 N2 

2 M er -ß.i(a,N) \ ^ COD (46) 

der Resonanz-Intervalle in den Verlauf von Tc ein, 
der in Abb. 1 über der Schichtdicke aufgetragen ist. 
Aus der a-Abhängigkeit des chemischen Potentials — 
wie sie von T H O M P S O N und B L A T T wie auch von F A L K 

TjcL°KJ 

15 20 25 30 a [Ä] 

Abb. 1. Tc, (untere) und T c (obere Kurvenstücke) als Funktio-
nen der Schichtdicke a gemäß Gl. (45) bzw. Gl. (77). Die ge-
strichelten Verbindungsstücke der Tc-Kurvenäste sind will-
kürlich, aber in hier ausreichender Näherung als gerade an-
genommen. Parameter: r i > = 1 0 0 o K , rC o o = Ubergangstem-

peratur des unendlichen Supraleiters = 3,75 °K. 

bestimmt wurde — folgt u. a. die besonders bei 
kleinsten Schichtdicken merkliche Nicht-Aquidistanz 
der Resonanzstellen. 

Aus den Gin. (10), (24) und (30) ergibt sich 
schließlich die im Grenzfall T = TC exakte, aber auch 
für T<TC bis auf Korrekturen der Ordnung a2 gül-
tige Ortsdarstellung der Lücken-Funktion 

A Or) 
N 

4 y « 2 71 JT X 
2Ä+T wti Sin" a 

(47) 

Die vereinfachende Wirkung der Bedingung (17) 
bestand in der Ausschaltung der Außerdiagonal-
elemente der Lücken-Matrix. Zusammen mit der Be-
dingung J E „ | < C O D lieferte das die völlige Entartung 
der Lücken-Matrix und daher unmittelbar auch die 
Eindeutigkeit der Lösung (43), (47). 

Bei Verzicht auf die Bedingung (17) lautet die 
linearisierte Lücken-Matrix-Gleichung allgemeiner 

, (2 N+l) MV0 , , 
n > = T c ( " ' " } ( 4 8 ) 



worin xc(n,n) die zur Temperatur Tc genommene 
Matrix 

l { n ' n ) = 2nMß ^ J ^ (—i co + enk) (iw+en.k) 
(49) 

bedeutet. Man erkennt durch Einsetzen, daß die Gl. 
(43) auch diese allgemeinere Lücken-Gleichung löst. 
Die Eindeutigkeit dieser Lösung ist aber nun ohne 
Diskussion der vollständigen Determinanten-Bedin-
gung des Systems (48) nicht mehr feststellbar. 

Zum Schluß dieses Abschnitts sei noch der Grenz-
fall T = 0 betrachtet. Die th-Funktion in Gl. (42) 
wird in diesem Fall gleich eins, so daß der Lücken-
Parameter nach Integration in der Form 

Sh (2 iV + 1) M V0 

oder — solange A0 hinreichend klein gegenüber 
2 o>n bleibt — genähert als 

A0~2 cop exp ( - ^ v ^ V f o ) (51> 

dargestellt werden kann. Zusammen mit Gl. (45) 
ergibt sich hieraus die Beziehung 

J , ( o ) « - ^ - 7 , c ( f l ) « l f 7 6 7 ' c ( f l ) . (52) 

3. Lösung der Gorkov-Gleidiungen 
bei Abschneiden in co 

Im vorigen Abschnitt bewirkte die Beschränkung 
auf hinreichend dünne Schichten zusammen mit dem 
Ausschluß der Resonanz-Intervalle die strenge Gleich-
heit der Diagnalelemente der Matrix (49) sowie das 

Verschwinden aller ihrer Außerdiagonalelemente. 
Die damit erzielte Reduktion des Gleichungssystems 
für die Elemente der Lücken-Matrix A auf die Glei-
chung für die eine Größe A ist in dem nun zu be-
trachtenden Fall — zumindest mit jener Strenge — 
nicht mehr möglich. 

Der Unterschied zwischen den Definitionen ( I I a ) 
und ( I I b ) der Lücken-Matrix berührt nicht die all-
gemeine Struktur der iterierten Lücken-Gleichung 

A (;n, n ) = x (n, n) Fnn- (A), (53) 

worin F als Funktion der Lücken-Matrix zu verste-
hen ist. Daher hat die analog der Matrix r(n,n), 
Gl. (49) , nun jedoch mit Abschneiden in w statt 
in e definierte Matrix f denselben entscheidenden 
Einfluß auf die gegenseitige Größenordnung der 
A (n, n) wie im vorigen Abschnitt die Matrix r. Im 
Anhang 2 werden die Elemente f (n, n ) näherungs-
weise berechnet bzw. abgeschätzt. Diese Diskussion 
ergibt, daß die Vereinfachung 
f (n, n) = f önn' 0{N — n) , n,n = 1 , 2 , . . . (54) 
bis auf Abweichungen um weniger als 1% zulässig 
ist, solange die mittels 

l s » l< 1 0 0 T W <55> n In —— n TQ, 

gekennzeichneten Schichtdicken-Intervalle [mit Gl. 
( 22 ) : | e„ | < 10O>d] ausgeschlossen werden und 
außerdem die Schichtdicke insgesamt durch 

N2<0,8 ju/Ü>d (56) 
[mit Gl. (22 ) : N < 15 bzw. a < 50 Ä] begrenzt 
bleibt. Die Lücken-Gleichung reduziert sich unter 
diesen Voraussetzungen auf die zu Gl. (29) analoge 
Form 

(2 7V+1) V0 fA2v.\rO(n M|2J V A(1\ S^nnU) 
A { n ) = a2two 1 d k G ° > { n k ) 1 1 ä A ( / ) T N + l 

N oo 
v A(l') A(l") A(l'") £ G0a>(mk)G(L(o(m"k) 

l',l",l"' — 1 m',m" = 1 

(2W + 1) 
^jSinml'l') S(m m" I" l")S{m" nt" / " ' ) ± . . .j, (57) 

in der sie nun auch völlig analog Gl. (29) behandelt im Rahmen der Näherung (54) gesichert ist. Dar-
werden kann. Insbesondere bleibt die Abschätzung über hinaus kommt der Abschätzung (36) keine Be-
(36) formal gültig, womit die Gültigkeit der Be- deutung für den vorliegenden Fall zu, weil ja durch 
ziehung ^ie Voraussetzung (54) schon Fehler nahe der Pro-

zentgrenze bedingt sind. 
1 _ (2 N+l) V0 v r j 2 f e J In Gl. (58) läßt sich sofort das e-Integral aus-

&n2aß a)-+Elk führen, wobei die Integrationsgrenzen ( e „ , o o ) we-



gen Gl. (54) durch (—00 ,00) ersetzt werden dür-
fen: 

1 = (2/V + l) MV o 1 
4 na ß (59) 

Da eine geschlossene Auswertung dieses Ausdrucks 
mit einfachen Mitteln nicht möglich zu sein scheint, 
betrachten wir zunächst die Grenzfälle T = TC und 
T = 0 (Überstreichung des Tc soll wie bei f die De-
finition durch Abschneiden in co andeuten, zum Un-
terschied von den mit Abschneiden in e erhaltenen 
entsprechenden unüberstrichenen Größen). 

Als Bestimmungsgleichung für Tc ergibt sich aus 
Gl. (59) mit Gl. (A 2.8) 

(2AT + 1) MV0 _ 
1 = T c 4 71 a 

(60) 

Wir erhalten aus dem Vergleich dieser Formel mit 
dem entsprechenden früheren Ergebnis, Gin. (43) 
und (44) , bei demselben Wert der Schichtdicke a 
wie auch des Kopplungsparameters F0 die einfache 
Beziehung 

rc = f c , (61) 

die explizit die Gestalt 

rp _-jT Tj) — 71 Tc 
* c — c TD exp 5 712 To2 713 Tc3(TD + 7lTc) 

6 TD(TD-71 Tc) 2 Tn(TD-jt Tc) (Tv + 2 7iTc) (TD+3nTc) 
(62) 

hat. Die an sich zweckmäßigere Darstellung dieser 
Relation durch ihre inverse Form TC = TC(TC) ließe 
sich nicht ohne weitere Näherungen gewinnen. Wir 
verzichten deshalb auf ihre formale Wiedergabe und 
verweisen statt ihrer auf Abb. 2. 

Abb. 2. Relative Abweichung von Tc gegenüber Tc bei TD 
= 100 °K. Definition des Parameters v: |e.y | = v TD bzw. 
€N+1=~v Tj). Die Kurve mit v = —00 entspricht der null-
ten Näherung, Gl. (62), die übrigen Kurven folgen aus Gl. 

(77) für deren Gültigkeitsgrenzen und N = 2. 

Die Neuformulierung von Gl. (11 a) in der Form 
( I I b ) äußert sich also in einer Vergrößerung der 
Tc-Werte vermöge eines selbst 7Vabhängigen Fak-
tors und ist in Abb. 1 durch die gegenüber der Kurve 
Tc angehobenen Kurvenstücke Tc dargestellt. 

Die Größe Tc hängt vermöge Gl. (62) außer von 
Tc auch noch von der DEBYE-Temperatur Tj) bzw. 
der ÜEBYE-Frequenz coD ab. Die Form dieser Abhän-
gigkeit wird demgemäß wesentlich durch Einzelhei-
ten der auf die •o>Summation wirkenden Abschneide-

vorschrift beeinflußt. Für eine Rechnung praktikabel, 
wenn auch sicherlich zu weitgehend idealisiert, ist 
wohl nur die für Gl. ( I I b ) gewählte Form. Wäre 
die Abschneidevorschrift in Gl. ( I I b ) mittels eines 
für co > OJD stetig abklingenden Dämpfungsfaktors 
statt der in den Summationsgrenzen verarbeiteten 
Stufenfunktion @(coD —|co|) formuliert worden, 
hätte sich vermutlich eine geringere Differenz zwi-
schen Tc und Tc ergeben. 

Das Verhalten der Lücken-Funktion A{x) im 
Grenzfall T = TC wird in der soweit behandelten Nä-
herung (54) wiederum durch Gl. (47) beschrieben. 

Der andere Grenzfall, T = 0, erlaubt den Über-
gang von der w-Summe zum co-Integral, so daß Gl. 
(59) in die mit Gl. (50) identische Beziehung 

A0 = OJD sh 4 71 a 
(2 N+l) M V0 

(63) 

übergeht. 
Um über die bisher in diesem Abschnitt benutzte 

Näherung (54) hinauszukommen, wollen wir nun 
noch am Grenzfall der kritischen Temperatur den 
Einfluß der n-Abhängigkeit der Diagonalelemente 
fc(n) diskutieren. Dabei soll weiterhin die Bedin-
gung (56) gelten, die einmal die Außerdiagonal-
elemente fc(n, n) unberücksichtigt zu lassen gestat-
tet, die aber zum anderen auch eine erhebliche Ver-
einfachung des an die Stelle von Gl. (54) tretenden 
Ansatzes erlaubt. Es genügt nämlich, entweder allein 
die Abweichung des Elements ^(A^) von rc in Rech-
nung zu stellen oder allein die des Elements f c (N + 1) 
von dem Wert Null. 



Beginnen wir mit dem ersten Fall: Der Ansatz 
lautet mit den Gin. (A2 .7 ) , (A2.8) und (A2.13) 

( T c ... n<N, 
*c(n) = f c - 6 f c ( 7 V ) . . . n = N, (64) 

l 0 ... n>N . 
Die Lücken-Gleichung schreibt sich zunächst unter 
Benutzung der Gin. (43) und (44) 

(2 N+l) rc A (n) -rc(n) | A(n) + 2 £A(l) J =0 

(65) 
und mit Gl. (59) bei formal zu f c (n ) analogem An-
satz für A (n) 

{2N+ 1) ( f c - r c ) A- 2 xcÖA(N) = 0 , (66) 

(2AT+1) (Tc-Tc-dic(N))A + 
[{2 N+l) xc-3xc+3dxc(N)]dA(N) = 0 . (67) 

Die zugehörige Determinanten-Bedingung 

( r c - r j 2 + [ 2 N r c + öxc (N) ] ( f c - r c ) 

+ 2 rc dxc(N) = 0 (68) 
definiert die Übergangstemperatur Tc. Ihre Auf-
lösung ist genähert 

r c - T c = ^ - d ? c ( y V ) . (69) 

Diese Beziehung tritt also für die durch 
— 10 eoD < e v < — 3 Ü>D (70) 

definierten Schichtdicken-Intervalle an die Stelle von 
Gl. (62) . 

und diese Näherung unterliegt, abgesehen von Gl. 
(56) , nur noch der Einschränkung Gl. (A2 .6 ) . Aus 
Gl. (77) liest man ab, daß beide Korrekturen im 
Sinne einer Abflachung des Resonanzverhaltens wir-
ken. Sie spielen eine merkliche Rolle nur bei den 
ersten Resonanzen, d. h. für kleine N. 

4. Vergleich mit den Ergebnissen von Thompson 
und Blatt sowie von Falk 

Bei der formalen Behandlung in den vorangehen-
den Abschnitten haben wir uns um die Einhaltung 
einer bestimmten Rechengenauigkeit bemüht, so daß 
wir nun in der Lage sind, die Gültigkeit der von 

Ganz entsprechend verläuft die Ableitung für die 
Intervalle 

3 o j d < G n < 10o>D, (71) 

für die man 

f rc ... n<LN, 
xc(n) = dxc{N + 1) ... n = N+l, (72) 

L 0 . . . n>N+l 

anzusetzen hat. Den Gin. (66) und (67) entspricht 
jetzt das System 

(2 TV + 1 ) (FC — TC) A— 2xc-dA{N+l) = 0 
(73) 

2 7V^fc(7V+ 1) A + (74) 
[ (2 TV-*-1) r c — 3 dxc(N + 1) ] <5zl(7V+l) = 0 , 

und die Determinanten-Bedingung führt auf die Lö-
sung 

( 2 ^ + 1 ) 2 ^ ( ^ + 1 ) . (75) 

Wegen Gl. (56) fällt jeweils die Korrektur in Gl. 
(69) oder die in Gl. (75) — wenn nicht gar beide 
— in die zugelassene Rechenungenauigkeit, und da-

her können beide Beziehungen zu 

^C-rc = ÖXC(N) - ( 2 * * 1 ) t öxc(N+l) (76) 

zusammengefaßt werden. Mit den Gin. (A2.12) und 
(A 2.13) wird daraus explizit 

(77) 

T H O M P S O N und B L A T T wie auch von F A L K gewonne-
nen Aussagen zu beurteilen. 

Die erste Frage betraf die Gültigkeit des BSC-
reduzierten Ansatzes der Zwei-Teilchen-Wechselwir-
kung audi im Fall von Schichtgeometrie des Supra-
leiters. Auf diesem Ansatz beruht die Rechnung von 
T H O M P S O N und B L A T T 2. Da jene Arbeit vom Ab-
schneiden in e ausgeht, beziehen wir uns zum Ver-
gleich der BSC-Methode mit dem GoRKOV-Formalis-
mus zunächst auf die Rechnung von Abschnitt 2. 

Der mit der GoRKOv-Theorie gegenüber dem BSC-
Ansatz erreichte Gewinn an Allgemeinheit äußert 
sich danach genau in dem Reihenrest Rn der Gl. (34), 
der aus der vollständigen Berücksichtigung der Zwi-

T -Y T » - J l T ° \ 5 a*Tc>(TD + nTc) 
c c y D e XP ( 6 7rD(7,D + ^7 ;c) 2 T d ( T d - j t Tc) (Tü+2 n Tc) ( f D + 3 n f c ) 

TD-tt Tc ( 1 4 N 
(am 6, AM (2N+l)2eN + 1 



schenzustände in den höheren Gliedern der Entwick-
lung (29) resultierte. Um also die GORKOV-Gleichun-
gen (24) , (25) und (26) auf eine zur BSC-Lücken-
Gleichung äquivalente Form zu reduzieren, hätte 
man lediglich die m-Summationen in den Gin. (25) 
und (26) ebenfalls der Abschneidevorschrift zu un-
terwerfen. Gl. (40) zeigt, daß der quantitative Unter-
schied zwischen den beiden Ansätzen völlig belanglos 
ist. 

Von geringfügigen Fehlern ( < 1%), die aus der 
unterdrückten n-Abhängigkeit der Lücken-Matrix-
Elemente erwachsen, abgesehen führt die Rechnung 
mit Abschneiden in co auf dieselbe explizite a-Ab-
hängigkeit des Lücken-Parameters wie zuvor die 
Rechnung mit Abschneiden in e [Gin. (63) und 
(50) ] . Diese Identität war zu erwarten; denn in bei-
den Fällen bedingt der Übergang T —> 0 den Über-
gang von der <o-Summation zur co-Integration, so 
daß über einen in e und co symmetrischen Integran-
den bezüglich beider Variablen integriert werden 
muß. Damit verschwindet aber in diesem Grenzfall 
der Wesensunterschied zwischen dem Abschneiden in 
E und dem in co. 

Der von T H O M P S O N und B L A T T benutzte Ansatz ist 
also zumindest bei Beachtung der Bedingungen (55) 
und (56) durch das Resultat, Gl. (63), gerechtfertigt. 

Die von F A L K durchgeführte Rechnung müßte 
nach dem zuletzt Gesagten zwangsläufig auf das 
THOMPSONS(he Resultat führen. Die Notwendigkeit 
der numerischen Anpassung mittels eines geeignet zu 
wählenden Parameterwertes (A = 0,82 in 6) hat zwei 
Gründe. Der erste besteht in dem Ansatz A [x) = A 
= const, der das Auftreten der Faltungs-Faktoren 
S (n, n , /, / ' ) in den GoRKov-Gleichungen verhindert 
und an ihre Stelle einfache KR0NECKER-^-Fakt0ren 
setzt. Die Folge ist ein Faktor 2 N statt 2 N + 1 in 
Gl. (63) , ein Unterschied, der sich bei kleinen N 
deutlich bemerkbar macht. 

Die hierdurch verursachte Abweichung vom Er-
gebnis von T H O M P S O N und B L A T T konnte nicht ohne 
eine zusätzliche Freiheit beseitigt werden. Eine solche 
wurde aber gerade in Form der Mittelungsvorschrift 
geschaffen, vermöge deren die ar-abhängige erste Ite-
ration der Lücken-Funktion mit dem Ansatz in Be-
ziehung gesetzt wird. Diese Vorschrift, nach der 
F A L K die Mittelung nicht auf die wahre Schichtdicke, 
sondern auf eine Art Halbwertsdicke der Verteilung 
der supraleitenden Elektronen bezieht, ist, wie die 
Rechnungen der Abschnitte 2 und 3 zeigen, vom for-
malen Standpunkt aus überflüssig. 

Ferner wurde von F A L K bemerkt, daß die zunächst 
nur für T = 0 erhaltene Lücken-Gleichung nach Er-
weiterung des Energie-Integranden um einen Faktor 
th \ß E auf den gesamten „supraleitenden" Tempe-
raturbereich 0 ^ T ^ Tc angewandt werden könne. 
Bei Abschneiden in E ergibt dies, wie wir aus Gl. 
(42) ersahen, tatsächlich die richtige Beziehung. Die 
Behandlung des Problems in Abschnitt 3 zeigte je-
doch, daß für größere Werte der kritischen Tempe-
ratur quantitativ durchaus wesentliche Abweichungen 
zwischen den mit beiden Abschneide-Formulierungen 
gewonnenen Resultaten bestehen. Diese Unterschiede 
sind hauptsächlich eine Folge der Anwendung der 
Gl. (A 2.10) auf Gl. (61) und wachsen mit der Tem-
peratur. Die prozentualen Unterschiede zwischen Tc 

und Tc, wie sie in Gl. (77) zum Ausdrude kommen, 
können daher sogleich auch als obere Grenze ent-
sprechender Differenzen des Lücken-Parameters im 
Temperaturbereich 0 < T ^ Tc gelten. 

Die bei Abschneiden in e innerhalb gewisser Gren-
zen gültige Beziehung (52) 

zl0(a) = const -Tc(a), 

gilt in vergleichbarer Näherung nicht mehr, sobald 
die beiden darin verknüpften Größen auf der Grund-
lage der co-Abschneide-Operation ermittelt sind; 
denn dem durch Gl. (77) beschriebenen Unterschied 
zwischen Tc und Tc steht keine entsprechende Ver-
schiedenheit bei der Lücken-Funktion A0(a) gegen-
über. 

Herrn Prof. Dr. G. L Ü D E R S danke ich für die An-
regung dieser Arbeit und für ihre stete Förderung. 

Anhang 

1. Auswertung des Korrekturterms Rn 

Die in Gl. (34) auftretende Größe Rn umfaßt ge-
mäß ihrer Definition genau alle jene Einzelterme 
der Entwicklung (29), in denen sich mindestens eine 
der m-Summationen von N + 1 bis oo erstredet. Wir 
klassifizieren die durch Rn dargestellte Gesamtheit 
von Termen nach der Zahl dieser in jedem Einzel-
beitrag vorkommenden von Â  + 1 bis oo laufenden 
m-Summationen, und überzeugen uns sogleich da-
von, daß auf diese Weise eine größenordnungs-
mäßige Unterteilung in Rn erreicht ist. Dazu braucht 
man nur den ungünstigsten Fall m = N +1 zu be-
trachten, für den unter Berücksichtigung von Gl. (23) 
und (19) 



wird, so daß die mit diesem Emk gebildete G°-Funktion nicht die Größenordnung 10/fj, überschreiten kann, 
während die G°-Faktoren für Quantenzahlen m N immerhin die Größenordnung 1/A erreichen. 

Wir betrachten also zunächst alle jene Einzelterme, in denen gerade eine m-Summation von N+l bis oo 
läuft. Ihre Gesamtheit kann durch 

n_1 00 2 vA ( A 
r H ) » - i v ( 2 i V + l ) 2 \co*+e2„k) (-iü)+enk)(i(o+es+2r,k) Z ( - 1 V ( A l . l ) 

dargestellt werden, worin zur Abkürzung s = 2N — (n — 2) gesetzt ist. In einem Term, der 2v + 2 
G°-Faktoren enthält, kann [vgl. dazu Gl. (31 ) ] die unbeschränkte m-Summation in jedem der 2 v inne-
ren G°-Faktoren auftreten. Die aus der Identität aller dieser Beiträge resultierenden Vielfachheit wird in 
Gl. ( A l . l ) durch den Faktor 2 v in Rechnung gestellt. — Die 5-Faktoren beschränken die r-Summa-
tion, d. h. wegen m = s + 2r die m-Summation, in der angegebenen Weise. 

Das Produkt der beiden unpaarigen G°-Faktoren in Gl. ( A l . l ) wird nun zuerst durch Partialbruchzer-
legung in eine Summe aus zwei Termen zerlegt, die sogleich mit ihrem jeweiligen Konjugiert-Komplexen 
erweitert werden. Die dabei entstehenden in w ungeraden Anteile können sofort unterdrückt werden, da 
sie spätestens bei der symmetrisch auszuführenden co-Summation wegfielen. Es bleibt also vorerst 

l / enÄ + e s + w \ ( A 1 2 ) 

e s + 2r,k+€nk \ C02+e^t ft>2 + G?+2r,* 

Während innerhalb des Integrations-Intervalls [ — coD , coD] variiert, durchläuft e s + 2r> k das Intervall 
4 ( A + r + 1) ( A + r - n + l ) 4(A + r + l ) (N + r-n+1) 

Hi J^ + WD (A 1.3) 

d. h., diese Variable ist groß gegenüber Enk und genähert konstant. Man kann den ersten Faktor in Gl. 
(A 1.2) entwickeln und mit dem zweiten zusammenfassen. Die symmetrische Integration bezüglich e n k ge-
stattet, die mit einem in e nk ungeraden Faktor behafteten Anteile schon hier auszulassen. Von den ver-
bleibenden Gliedern kommen nur noch die von niedrigster, d.h. zweiter Ordnung in l/e s +2r,A für die 
beabsichtigte Näherung in Betracht. Damit wird aus dem Formelteil (A 1.2) 

- • J h * - + • ( A 1 - 4 ) 

Setzen wir nun dieses in Gl. (A 1.1) ein und führen die v-Summation aus, dann bleibt nach einfachen Um-
formungen 

2 A3 co*+e*nk K,1 I 1 e*jt 
2 - 7 3 T b - + - T T V — . ( A 1 . 5 ) (2 7V + 1)2 CU2 + £ L Cüt + Elt £«+2r,i C02 + 6 ^ O>2 + €,2 + 2^ 

Im zweiten Summanden dürfen wir sogar noch co2 gegenüber ef+2r,Jfc vernachlässigen, weil das asymptoti-
sche Verhalten dieses Anteils dadurch lediglich auf 1 fco2 reduziert wird, was aber für die Konvergenz der 
co-Summation noch ausreicht. Mit dieser Vernachlässigung nimmt der Beitrag ( A l . l ) schließlich die Ge-
stalt 

2 Aco2 nv! A2 ,A , 
L T i (A 1.6) (2 7V+1)2 ( c o 2 + E ^ 

an. Als Folge der symmetrischen o)-Summation und e -Integration sind also alle Beiträge der Ordnung 
a = A/jii ausgefallen, und es bleibt als Hauptkorrekturterm ein solcher der Ordnung a2^10~"7 . 

Damit ergibt sich aber die Notwendigkeit, auch diejenigen Terme von Rn zu berücksichtigen, die zwei von 
N + l bis 00 laufende m-Summen enthalten. Dadurch kommen insgesamt noch sechs strukturell verschie-
dene Termserien ins Spiel, die einzeln nach dem obigen Muster auszuwerten sind. Wir verzichten hier aber 
auf die Wiedergabe der Rechnungen und geben sogleich deren Resultat an. Der Korrekturterm der Ord-
nung a2 lautet insgesamt 



(2A+1)2 co*+E*nk 

n y _ J _ { _ » ! _ ( i _ + 
r% eUw* [co2 + ££* 2N+1\1 (üi+El* I ^ 

4 1 U 3 + 2 , 2 1 /O !V7 I 1 \ 2 l O , .2 I F2 T i , , , r ! , , T ^ (2 A + l ) 2 \ 2 0)*+Elk ' ~ (o>2+£**)2 (o>2 + £°*) 
i n—2 n=1 i ( a» 

+ _ J _ y v i J 1 + 2 — 
2 A + l r = 0 r ' = t + l + 6 s + 2r>Är [ C02 + £ ^ 

/14 \) 
( A 1 .7 ) 

1 / O A * A A 2 ( ° 2 
+ - 3 - , p > + 4 , , , „ . . + 4 2N + 1\ o>2+£L (co'+E^)2 ^ (co2 + Enk)2 

Wir interessieren uns lediglich für eine obere Schranke des Betrages von Rty. Dazu werden alle negativen 
Vorzeichen durch positive ersetzt. Dann kann die erste geschweifte Klammer durch den Zahlenwert 3 und 
die zweite durch 7 majorisiert werden, wenn u. a. für N der Minimalwert 1 benutzt wird. Die r- und 
/-Abhängigkeit wird unter Vergrößerung der betreffenden e -Faktoren mittels r = r = 0 beseitigt und dar-
aufhin die r- und /-Summation ausgeführt. Man erhält 

I RW\ < _ J M £ i a 2 f A i ox 

und mit dem gemäß Gl. (23) größten zulässigen Wert N = 20 ergibt das 

2. Berechnung der Matrixelemente f (n, n) 

Die Elemente der Matrix f sind analog Gl. (49) durch 
1 Ö>D 1 

f (n, n) — 0 * 2 /d2 fc . . . w . — — (A 2.1) 

definiert. Nach Umwandlung des Integrals in ein solches bezüglich der Variablen ek und Partialbruchzer-
legung ebenfalls bezüglich £k werden die komplexen Nenner mit ihren konjugierten Ausdrücken erweitert 
und die dadurch im Zähler entstehenden Klammern ausmultipliziert. Der Imaginärteil hat die Form 
w F ( o f i ) , liefert also in Anbetracht der symmetrisch auszuführenden «-Summation keinen Beitrag. Der 
Realteil lautet nach geeigneter Zusammenfassung 

oo 
1 vR 1 C , f 2 OJ* - e (c„ - g»>) , 2 o>*+En-k (en - g»>) \ r (n, n ) = ~f ̂  4 a > * + ( * „ - * „ , ) * J ^ ( + " j ' ( A 2'2> 

0 

woraus durch Integration unmittelbar der Ausdruck 

,, 1 ^ f l £n-en• , (£n~lu)2 + C02 2 \ CO \ ( En Gw-
r ( m » ) - I T 1 1~2~ 4 CÜ2+ 2 l n J e ^ - W + W + ( £ ß - £ n , ) 2 - a r C g ~co a r c V CJ Wo 

(A 2.3) 

entsteht. Für die Diagonalelemente vereinfacht sich 
diese Formel zu 

1 °' D 1 [ 7t En ] 
f(n,n) = x(n) = T V a r c t g j 

I CO— COß 1 1 l 1 ' / 
(A 2.4) 

Der darin auftretende arc tg wird durch 
En rt . CO | . . arc tg T—p = — sign En - — — (A 2.3) j co | ^ t n 

ersetzt, was einen Fehler von maximal 1% bedingt, 
solange 

| e » | > 3 c o D ( A 2 . 6 ) 

bleibt. Diese Bedingung ist also etwas einschneiden-
der als die analoge Bedingung [ E n \ ^ wD , durdi 
die im Abschnitt 2 die Resonanzintervalle von der 
Betrachtung ausgeschlossen wurden. Gl. (A 2.4) und 
(A. 2.5) zusammen liefern für die Diagonalelemente 



r ( n ) = 

COD 
V 

CO (OD 
1 1 

G « 

e» ... n^N, 

C0D 

V Z-
0)= —(OD 

... n > N . 

(A 2.7) 

Zur Auswertung der Summen haben wir auf die De-
finition (7) zurückzugreifen, mit der sich der Haupt-
term in der Gestalt 

schreibt, wenn außerdem 

/ D = 
Tp—nT 

2 n T 

(A 2.8) 

(A 2.9) 

( M = größte ganze Zahl ^ x) definiert wird. Mit 
Hilfe der Formel 9 

y 
Ä = 1 k = C + \nn+-

2 n 
1 

12 n (n + l) 

1 
12 n ( n + 1 ) ( n + 2 ) - . . . (A 2.10) 

(C = In y = EuLERsche K o n s t a n t e = 0 , 5 7 7 2 1 . . . ) 
kann Gl. (A2.8) zu 

2 Z d + 1 5 r = C + l n 2 ( 2 / D + l ) + l n 
2/d 

+ Zd + 1 
2ZD(2 ln + 1) (2 ZD + 3) (2 ZD + 4) 

1 2 Z D ( 2 Z D + 1 ) 

+ . . . (A 2.11) 

umgeformt werden. Indem wir diese Gleichung wie-
der mit der ursprünglichen ^-Abhängigkeit schrei-
ben, unterdrücken wir jedoch die eckigen aus Gl. 
(A2.9) herrührenden Klammern. Dadurch werden 
lediglich gewisse Details im Verlauf von t(T) unter-
drückt, die eine offenbar uninteressante Folge der 
scharfen Definition des Abschneidewertes coD sind. 
Dann ist 

r = l n 2 ^ D + l n J D + 
71 T ^ rD—71 T 6 TD(TD-TI T) 

7t3 T3 (Ty + 71 T) 
' 2 Td (TD—7i T) (TD+2TIT) (7D+3 TC T) + • • • • 

(A 2.12) 
Die Korrekturglieder in Gl. (A 2.7) sind einfach 

auszuwerten und ergeben 

ör(n) = V 2 
~-n I 1=0 

TD—7i T 
TT |e„ I (A 2.13) 

Nur für 3 w d < J EN | < 10 coD bedingen diese eine 
Verbesserung des Hauptterms (A 1.12) um mehr 
als 1%. 

Bei den Außerdiagonalelementen begnügen wir 
uns mit einer Abschätzung ihrer (auf f bezogenen) 
Größenordnung. Die Matrixelemente werden majo-
risiert durch 

r(n,n)\< £ . 
;=01 £n') 

7t2 T- . _ , T . e ( 2 / + 1 ) + - - I n -

(A 2.14) 

Nach Ausführung der /-Summation ist das 

I f (n n) I < 2 ( T D + ? r T ) 2 + T d + j t T In - w -

(A 2.15) 

Bei der Wahl der Werte (22) bleibt für den ungün-
stigsten Fall, n = l , n = 3 

r(l,3) 

( 5%o für 10 , 
< 1 % für N ^ 15 , 

l 5% für TV ^ 20 , 
(A 2.16) 

während alle übrigen f (n , n ) noch deutlich unter 
diesen Werten bleiben. Diese Gegenüberstellung 
zeigt wiederum, daß gewisse einschränkende Bedin-
gungen im Fall der Behandlung des Problems mit 
Abschneiden in co schärfer gefaßt werden müssen als 
bei Abschneiden in 6. 

9 K. R O T T M A N N , Mathematische Formelsammlung, BI-Hochschul-Tasdienbuch 13, Mannheim 1960. 


